
Introduction
● High demand for cyber-infrastructure which enables geological

image data to be shared.
● Develop a system which accurately identifies whether an input

image contains a sigma-clast, even with limited data.

Data Augmentation
● Allows for smaller datasets to become larger, as long as data is not

augmented to a different classification(ex. Distorting Sigma-Clast
image to become more of a Non-Sigma-Clast)

Effects Utilized:
Rotation range: 40˚
Height/width shift: 10%
Shear range: 0.2 rad ccw
Zoom: 30%
Horizontal flipping: true
Fill mode : “reflect”

Conclusion and Future Research
● Significant improvement of accuracy can be seen among the system of

networks.
● Being able to classify the rotation of a Sigma-Clast (i.e.

Counter-Clockwise/Clockwise)
● Allow for K-Fold cross validation evaluation
● Generalize the model for multiclass classification.
● Web Application

○ Enhance UI -- color scheme, fill whitespace effectively
○ Allow for prediction options such as ensembles and fine-tuning
○ Host application on a live site

Transfer Learning and Fine Tuning
● Allow a Convolutional Neural Network to correctly learn over a very large dataset
● Take the Convolutional Neural Networks and utilize its features instead of

creating our own.
● Fine tuning modifies last few layers to ensure we look for the complex structures

we want.

Neural Network Ensembles
● Takes Multiple Convolutional Neural Networks and combines their output.
● This method ensures that we reduce the variance between multiple models by

taking the average of each model to compute the classifications

Dataset

Sigma-Clast Sigma-Clast Non-Sigma-Clast

Counterclockwise
Rotation

Zoom

Height Shift
Width Shift

Zoom

Horizontal Flip
Clockwise Rotation

Filled

Sigma Clast Recognition using Transfer Learning with a Convolutional Neural Network
Joseph Robinson, Catherine Meyer, Dr. Gurman Gill

Sonoma State University Computer Science Department

Testing Data Augmentations
(nnon-sigma = 879; nsigma = 100)

Process Flow for Web-based Classification

Front-End: React JS
Handles the user interface, sets necessary objects to be sent to the backend.

HTTP Client: Axios
"Connects" the front-end to the back-end using HTTP.

Microframework: Flask
Designed for Python; handles the HTTP requests that come from Axios.

Back-End: Python

Creates functionality to resize and classify images.
Classification: Keras and Tensorflow

The libraries that allow for the prediction and classification of images.

Full Stack Architecture for Web-based Classification

*Combination of Augmentations refers to the augmentations
listed under Effects Utilized in the above frame

*F1 score is an evaluation metric that is a trade-off between
the recall (true positive rate) and precision (fraction of relevant
classifications)

Artificially Increasing the Dataset with Oversampling
(nnon-sigma= 879, 2637, 5257; nsigma = 100)

● We can artificially
increase the largest
class of data we have,
then use oversampling
to create copies of the
smaller dataset to
match

Best Combination
● Used Methods: Oversampling with

n~3000 and Fine Tuning, on ResNet50
● F1 Score: 0.919

Confusion
Matrix Non-Sigma Sigma

Non-Sigma 791 0

Sigma 5 25

Acknowledgements
Special thanks to Earthcube NSF Grant for funding this research, as well
as Dr. Gurman Gill for guiding the team

