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A B S T R A C T   

Interest in ecoacoustics has resulted in an influx of acoustic data and novel methodologies to classify and relate 
landscape sound activity to biodiversity and ecosystem health. However, indicators used to summarize sound and 
quantify the effects of disturbances on biodiversity can be inconsistent when applied across ecological gradients. 
This study used an acoustic dataset of 487,148 min from 746 sites collected over 4 years across Sonoma County, 
California, USA, by citizen scientists. We built a custom labeled dataset of soundscape components and applied a 
deep learning framework to test our ability to predict these soundscape components: human noise (Anthro-
pophony), wildlife vocalizations (Biophony), weather phenomena (Geophony), Quiet periods, and microphone 
Interference. These soundscape components allowed us to balance predicting variation in environmental re-
cordings and relative time to build a custom labeled dataset. We used these data to quantify soundscape patterns 
across space and time that could be useful for environmental planning, ecosystem conservation and restoration, 
and biodiversity monitoring. We describe a pre-trained convolutional neural network, fine-tuned with our sound 
reference data, with classification achieving an overall F0.75-score of 0.88, precision of 0.94, and recall of 0.80 
across the five target soundscape components. We deployed the model to predict soundscape components for all 
acoustic data and assess their hourly patterns. We noted an increase in Biophony in the early morning and 
evening, coinciding with peak animal community vocalization (e.g., dawn chorus). Anthropophony increased 
during morning/daylight hours and was lowest in the evenings, coinciding with diurnal patterns in human ac-
tivity. Further, we examined soundscape patterns related to geographic properties at recording sites. Anthro-
pophony decreased with increasing distance to major roads, while Quiet increased. Biophony and Quiet were 
comparable to Anthropophony at more urban/developed and agriculture/barren sites, while Biophony and Quiet 
were significantly higher than Anthropophony at less-developed shrubland, oak woodland, and conifer forest 
sites. These results demonstrate that acoustic classification of broad soundscape components is possible with 
small datasets, and classifications can be applied to a large acoustic dataset to gain ecological knowledge.   

1. Introduction 

The value of different sounds across the landscape has long been 
recognized as socially valuable (Schafer, 1993; Southworth, 1969), and 
acoustic data are becoming more economical and efficient to collect, 
permitting characterization of spatial and temporal patterns of biodi-
versity, human activity, and other sounds (Depraetere et al., 2012; 
Shonfield and Bayne, 2017). The acoustic quality of habitats is also 

recognized as a vital dimension of conservation (Dumyahn and Pija-
nowski, 2011; Schafer, 1993), as increasingly excessive human noise can 
have a range of direct deleterious effects on biodiversity (e.g., acoustic 
masking from overlapping communication frequency ranges) (Doser 
et al., 2019; Francis et al., 2017). Identifying naturally quiet landscapes 
and relating patterns in anthropogenic and biotic noise is essential in 
understanding the effects of changing human activity on biodiversity 
and noise reduction on conservation and management efforts of 
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protected areas (Newport et al., 2014; Rice et al., 2020). 
The unique assemblage of sounds across a landscape is collectively 

referred to as a soundscape (Krause, 2002; Pijanowski et al., 2011) and is 
treated as an ecological characterization of landscapes (Pavan, 2017, 
Sethi et al., 2020). Recorded soundscapes consist of anthropogenic ac-
tivity (anthropophony), wildlife vocalizations (biophony), and weather- 
related phenomena (geophony; Pijanowski et al., 2011), along with 
quiet (the ambient sound or lack of acoustic events) at a given time-
frame. Because soundscapes integrate the acoustic dynamics of an 
ecosystem, they can be considered as “community phenotypes,” inte-
grating vocalizing species, anthropogenic noise, and natural phenomena 
(Lellouch et al., 2014). Capturing soundscape snapshots provide 
meaningful insights related to biodiversity and human impacts, high-
lighting changes such as degraded habitats (Bush et al., 2018; Dumyahn 
and Pijanowski, 2011; Sueur et al., 2008). Recent work has related 
soundscape activity to geographic characteristics such as land-use 
change (Eldridge et al., 2018; Sethi et al., 2020), as well as gradients 
in vegetation and forest structure (Boelman et al., 2007; Dröge et al., 
2021; Farina and Pieretti, 2014). Human impact has been linked to 
soundscape variation, including increased anthropogenic noise near 
high traffic roads (Doser et al., 2019), complex interactions between 
biophony and anthropophony in urban soundscapes (e.g., overlapping 
frequencies) (Fairbrass et al., 2017), soundscape similarity in oil palm 
production with forested soundscapes (Furumo and Aide, 2019), and 
impacts of snowmobile activity on winter quiet (Mullet et al., 2017b). 
Additional research linking patterns in sounds across landscapes and 
time will improve the utility of ecoacoustic methods for informing 
conservation and land management. 

Two standard methods of assessing the information in soundscapes 
include deriving acoustic indices and manual identification of acoustic 
events (i.e., done by a human, not an algorithm). Acoustic indices 
describe the acoustic energy in amplitude, time, and frequency space 
(Sueur et al., 2014), while manual identification provides specific time 
and frequency data (Grant and Samways, 2016; Rose et al., 2018). Both 
methods summarize sound into meaningful, interpretable ecological 
indicators (e.g., species diversity or acoustic complexity). However, 
acoustic indices vary in their ability to convey meaningful biodiversity 
information, making comparisons between studies or geographic re-
gions non-trivial (Bradfer-Lawrence et al., 2019; Metcalf et al., 2021). 
Poor performance of acoustic indices has been attributed to the presence 
of confounding, background sounds in recordings, making identification 
and filtering of non-biophonic noise a necessary step for indices to be 
applied for consistent biodiversity and human impact monitoring 
(Depraetere et al., 2012; Eldridge et al., 2018; Fairbrass et al., 2017). 
Likewise, manual identification of sound sources is highly time- 
intensive and requires detailed knowledge of target animal vocaliza-
tions, thus, limiting this approach to smaller datasets (Pérez-Granados 
and Traba, 2021; Shonfield and Bayne, 2017). 

Due to recent computational innovations, soundscape dynamics and 
their associated patterns of biodiversity can be derived with less effort 
and time using deep learning identification (Christin et al., 2019; Fair-
brass et al., 2019), source separation (Lin and Tsao, 2020), and unsu-
pervised classification (Sethi et al., 2020). Efforts in environmental 
sound classification established the effectiveness of convolutional neural 
networks (CNN), a type of deep learning architecture (Lecun et al., 
2015), for soundscape classification (Piczak 2015; Salamon and Bello, 
2017). In ecoacoustics, CNNs have been applied in species-specific 
vocalization (Christin et al., 2019; Kahl et al., 2018; Ruff et al., 2021) 
and targeted sound classification (e.g., gunshots or rain) (Metcalf et al., 
2020; Sánchez-Giraldo et al., 2020). Alternatively, source separation 
methods have successfully identified specific types of sound by sepa-
rating sound mixtures into individual sources (Eldridge et al., 2018; Lin 
and Tsao, 2020). Few ecoacoustic studies have attempted to classify 
entire soundscapes using broadly defined sound categories such as 
anthropophony, biophony, geophony, and quiet. One study that classi-
fied broader soundscape components developed two CNN classifiers that 

modeled biophony and anthropophony in urban London (Fairbrass 
et al., 2019). They found that CNN models trained on a limited amount 
of expertly annotated sound samples outperformed multiple acoustic 
indices in representing human and animal activity patterns in urban 
soundscapes (Fairbrass et al., 2019). Other efforts have successfully 
modeled acoustic-environmental relationships of anthropophony, bio-
phony, and geophony, but this required manual identification of sounds 
in almost 60,000 recordings (Mullet et al., 2016). 

Ecoacoustic analyses typically focus on one or a few target sounds, 
but to characterize these sounds with confidence, other, confounding 
sounds need to be identified and, in some cases, removed. Some methods 
to account for unwanted sound include avoiding sites close to roads 
(Duchac et al., 2020), using pre-programmed amplitude or frequency 
audio filters (Bedoya et al., 2017; Duchac et al., 2020; Towsey, 2013), 
relating meteorological data to recordings to filter weather events 
(Desjonquères et al., 2018; Gasc et al., 2018), or manual identification of 
noises (Bradfer-Lawrence et al., 2019; Gordon et al., 2018). Compara-
tively, deep learning solutions can efficiently and accurately extract 
important data features, allowing for noise from signal separation. 
Products from deep learning can address many of the above issues in 
accounting for confounding noises and classifying soundscapes in one 
modeling framework (Christin et al., 2019). For example, these 
modeling efforts can negate the need for acoustic filtering, which is 
broadly applied but is ineffective in specific environments (e.g., fre-
quency filtering in urban landscapes) (Fairbrass et al., 2017). Deep 
learning models can also be more broadly applicable than traditional 
acoustic indicators because they can be updated when presented with 
new acoustic data (Fairbrass et al., 2019; Ruff et al., 2021). 

Here, we present methods to classify soundscape components using a 
deep learning approach in Sonoma County, California, USA, an area that 
includes a gradient of natural and anthropogenic ecosystems. We aim to 
demonstrate the ability to classify broadly inclusive soundscape com-
ponents: Anthropophony, Biophony, Geophony, Quiet, and physical or 
electronic recorder Interference (ABGQI) while accounting for modeling 
uncertainty using deep-learning practices and accuracy on par with 
current modeling efforts (Christin et al., 2019; Ruff et al., 2021). We 
investigate the relationship between these soundscape indicators with 
land use/land cover and road distance to understand soundscape vari-
ation across human impact and geographic gradients. Soundscape 
classification allows for (a) automated identification of unwanted 
sounds in large amounts of data, (b) modeling the effects and in-
teractions of different sounds, and (c) use of modeling products them-
selves (e.g., classified acoustic samples) to understand spatio-temporal 
patterns in sound activity. 

2. Methods 

2.1. Study region and acoustic data collection 

The study area was Sonoma County, California, USA (38.51◦N, 
122.93◦W), covering 4,152 km2 north of the San Francisco metro area 
(Fig. 1). The county has a Mediterranean climate with average annual 
precipitation of 1,040 mm (Supplementary Materials S.1). Non-native 
annual grasses dominate grasslands and can be unmanaged or support 
beef and dairy cows. Urban areas and agriculture (primarily vineyards) 
are concentrated in valleys (Fig. 1). The county’s common vocalizing 
animals include multiple bird species, amphibians, and invertebrates (e. 
g., crickets, katydids, cicadas). 

Autonomous recording units (ARUs) were deployed across Sonoma 
County in 2017–2020 as part of the Soundscapes to Landscapes (S2L; 
soundscapes2landscapes.org) citizen science project. Sites were selected 
across the county based on a topographic lowland and highland strati-
fication, then broad land use/land cover (LULC) types, such as forest, 
shrubland, herbaceous, urban areas, and agriculture (sonomavegmap. 
org; Supplementary Materials S.1). This stratification scheme provided 
field sites with heterogeneous vegetation types, various vocalizing 
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species, and a range of human impacts to capture diverse acoustic 
settings. 

At each site, citizen scientists deployed a single ARU, either an 
Android-LG smartphone with an attached microphone in a waterproof 
case or an AudioMoth recording device (Hill et al., 2018) in a vinyl 
protective pouch. ARUs were deployed for at least 72 h, with pro-
gramming to record 60-s every 10 min, resulting in six minutes per hour 
and 144 min per 24-hour period. Each minute recording was saved in a 
waveform audio file format (.wav) with 16-bit digitization depth and 
44.1 kHz or 48 kHz sampling rate for LG ARUs and AudioMoth ARUs, 
respectively. This sampling rate allowed for an effective upper fre-
quency of 22.05 kHz for LG ARUs and 24 kHz for AudioMoth ARUs. 

We collected 487,148 min (~8,000 h) of sound data during bird 
breeding seasons (March-July) across 746 sites with an average of 642 
± 370 min per site (Fig. 1). The 746 sites were distributed across years 
unevenly: 2017 (n = 122), 2018 (n = 89), 2019 (n = 345), and 2020 (n 
= 190) and ARUs: LG (n = 201) and AM (n = 545). Sampling effort was 
not consistent across years due to an early project prototyping phase 
with less data (2017) and COVID-19 lockdown (2020), which delayed 
recorder deployment. Furthermore, sites were not evenly distributed 
across LULC types: agriculture/barren (n = 11), conifer forest (n = 222), 
oak/hardwood forest (n = 283), herbaceous (n = 147), riparian/ 
wetland (n = 21), shrubland (n = 47), and urban/developed (n = 15) 
(Supplementary Materials S.2). Uneven distribution of sites across LULC 

types is primarily due to land accessibility in Sonoma. 

2.2. Deep learning classification of soundscape components 

Deep learning, a branch of machine learning, uses multiple hidden, 
non-linear transformations to automatically derive abstracted repre-
sentations of raw data (e.g., images or words). Comparatively, non-deep 
learning modeling techniques are limited in their ability to interpret raw 
data without prior feature extraction by a human (e.g., amplitude or 
frequency) (Christin et al., 2019; Lecun et al., 2015). Here, we are 
interested in identifying specific types of sounds in audio recordings, 
represented as spectrogram images (Fig. 2). We used a CNN to which we 
supplied a training dataset composed of acoustic images labeled present 
or absent for a given class (e.g., is human noise present?). Training the 
model (learning) begins with extracting basic “features” (e.g., shape and 
texture) from the image set. These extraction steps become abstracted 
within the model until the final step, which attempts to classify the 
image by relating learned features to the known image label. After 
training, we used another set of labeled images withheld during model 
training (test set) for model selection and accuracy evaluation. We then 
predicted the presence and absence of sounds in all recordings with the 
best performing model. 

To identify soundscape components across Sonoma County, we used 
a CNN to classify five broad target classes: Anthropophony, Biophony, 

Fig. 1. Sonoma County, California, USA land use/land cover classes derived from Sonoma County Fine-scale Vegetation and Habitat Map. Inset of Pepperwood 
Preserve sites. We show Soundscapes to Landscapes site location densities from 2017 to 2020 (n = 746). 
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Geophony, Quiet, and Interference (ABGQI) (Fig. 2). The Quiet class 
represented periods without other soundscape components below 11 
kHz (i.e., no discernible acoustic events), resulting in periods with 
minimal change in sound from baseline ARU self-noise levels (Fig. 2 – 
Quiet; Supplementary Materials S.5). Interference is defined here as 
broadband, short duration, electronic or physical microphone interfer-
ence events, for example, when a branch hits a recorder during a strong 
wind gust. We classified Interference to represent recording error, while 
ABGQ relay ecologically meaningful information. Converting raw 
acoustic data to spectrograms allowed us to use the well-established pre- 
trained MobileNetV2 architecture, a lightweight CNN trained on Google 
search imagery (ImageNet; github.com/tensorflow/models/tree/mast 
er/research/slim/nets/mobilenet) for transfer learning (Christin et al., 
2019; Yosinski et al., 2014). Other ecoacoustic recognition tasks have 
successfully demonstrated the effectiveness of spectrograms and CNNs 
(Fairbrass et al., 2019; Sethi et al., 2020). 

2.2.1. Labeled dataset collection 
To create labeled data for ABGQI classification, we randomly 

sampled audio files from the entire S2L dataset, first stratified by LULC 
type and then by site. An upper limit of 350 audio files was sampled from 
each LULC type amounting to 2,367 sampled recordings. Sites within 
each LULC type were sampled equally (i.e., if urban/developed land 
cover contained 15 sites, 23 audio files were randomly selected from 
each site for 345 total audio files). We verified that random sampling 
within LULC and sites resulted in an even sampling across 24 h (Sup-
plementary Materials S.3). 

Citizen scientists and team members were randomly assigned unique 
recordings to identify ABGQI sounds from the audio file subset by 
loading the recording in Raven Lite 2 audio software program (Cornell 
Lab of Ornithology, Cornell University, Ithaca, NY; ravensoundsoftware. 
com). Audio files were then annotated with regions of interest (ROIs; 
Figs. 2 and 3), or discrete sound events, by visualizing spectrograms with 
a standard frequency range of 0–12 kHz and spectrogram window size of 
512 samples. We chose a cutoff duration of 5-s because some sound 
events are not temporally discrete (e.g., constant wind or vehicle traffic) 
and limited the length of ROIs to no more than 5 ROIs of the same class 
per audio file to account for oversampling and biasing individual sound 
files. C.Q. then verified that every ROI was a true presence. This process 
resulted in 5,396 ROI annotations in 1,194 of the 2,367 subset 

Fig. 2. The five broad soundscape classes shown here are examples of the acoustic activity represented in Mel spectrograms. The Mel spectrograms are 2-s long (x- 
axis), span from 0 kHz to 11.025 kHz (y-axis), and display relative amplitude (z-axis). Manually annotated regions of interest (ROIs) are represented as black hashed 
and shaded boxes. See Section 2.2.3 for Mel spectrogram methods. 

Fig. 3. Our workflow for data preprocessing (1–3) and model development (4–8). *(5–8) performed on each cross-validation data split.  

Table 1 
The number of regions of interest (ROIs) from S2L and Freesound data, the 
number of 2-s Mel spectrogram (Mel spec) samples created from all ROIs, and 
the final 2-s training set size for each soundscape class.  

Sound Class S2L 
ROIs 

Freesound 
ROIs 

Mean ROI 
length (s) 

Total 2-s 
Mel spec 

Training 
set size 

Anthropophony 916 883  1.67 2,170 1,920 
Biophony 2,372 556  1.88 3,336 3,086 
Geophony 957 801  1.60 1,955 1,705 
Quiet 765 0  3.06 1,023 773 
Interference 386 0  2.05 430 330 
TOTAL 5,396 2,240  – 8,914 7,814  
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recordings with an average count of 2.77 ± 3.56 ROIs per recording 
with a presence (Table 1). A list of the target sounds is in Supplementary 
Table S.4.1 and ROI collection methods at (https://doi. 
org/10.5281/zenodo.6027024). 

2.2.2. Auxiliary Freesound data 
CNN classification training typically requires thousands to millions 

of images or hundreds of hours of acoustic data (Christin et al., 2019; 
Knight et al., 2017). We added ROI samples using open-access Freesound 
data because there were fewer than 1,000 ROIs per class in our ABGQI 
ROI data (freesound.org; file data at https://doi. 
org/10.5281/zenodo.6027024). C.Q. listened to each Freesound file 
for quality (e.g., clarity and presence of single, unmixed sound) because 
recordings were long and variable (60.25 ± 75.13-s) and were some-
times poorly labeled. We used the autodetec function in the package 
warbleR (Araya-Salas and Smith-Vidaurre, 2017) in the statistical soft-
ware program R (R Core Team, 2020) to isolate sound events in re-
cordings. If an event was evident in the spectrogram (e.g., consistent 
with the general characteristics of the soundscape component), it was 
included in the ROI dataset resulting in the addition of 2,240 Freesound 
ROIs (Table 1). 

2.2.3. Spectrogram generation and cross-validation 
We chose to use 2-s Mel spectrogram representations of ROIs to 

balance short-duration acoustic events (e.g., bird chirps) with longer- 
duration events (e.g., vehicle traffic) (Zhong et al., 2020). We clipped 
and combined all ROIs into a single synthetic acoustic file for each 
soundscape component. ROIs > 2-s were directly added to these re-
cordings, whereas ROIs < 2-s were padded randomly around the ROI 
center time for a total of 2-s (Fig. 3; e.g., if an ROI was 1.5-s, 0.5-s from 
the audio file would be randomly added before or after the ROI). This 
process meant short ROIs had additional surrounding context, and 
padding could introduce unknown sounds, reflecting the model’s real- 
world application. Because we directly added ROIs > 2-s to each 
soundscape component’s synthetic recording, some 2-s spectrogram 
segments contained multiple unique ROIs. Synthetic soundscape 
component recordings were spliced into 2-s segments and converted into 
Mel spectrograms using python 3.7.7′s librosa 0.6.3 library (McFee 
et al., 2015; Python Software Foundation, 2016). Although ARUs 
sampled at a rate of 44.1 kHz or higher (effective reproduction of fre-
quencies below 22.05 kHz), spectrograms were generated from 0 kHz to 
11.025 kHz (half the Nyquist frequency), regardless of ROI frequency 
range. The upper-frequency limit overlapped with most acoustic indices 
and allowed for frequency shifts above the 0–8 kHz frequency window 
where most anthropogenic and low-frequency animal vocalizations 
occur (Boelman et al., 2007; Kasten et al., 2012; Sueur et al., 2014). The 
resulting image was 432x432 pixels in red–green–blue color bands 
representing amplitude levels (Fig. 2). Spectrograms were down- 
sampled to 224x224 pixel, 3-banded images for CNN training, testing, 
and deployment; the default input size for the pre-trained CNN. 

In CNN modeling practices, training data are used for learning data 
features, while validation data are used for model assessment and tuning 
hyper-parameters during training. In contrast, testing data are withheld 
to perform an independent model performance evaluation and generate 
accuracy estimates. We randomly sampled spectrograms from each 
sound class into validation (n = 200), testing (n = 50), and training (all 
remaining component spectrograms; Table 1) datasets five times for a 
five-fold cross-validation training approach (Fig. 3). Cross-validation 
provided a measure of model performance to strengthen model evalu-
ation given the small dataset size. We decreased the number of Inter-
ference validation samples to n = 50 because of the class’s low sample 
count. We had 850 total validation samples and 250 total testing sam-
ples. The model with the highest class-specific accuracy in cross-fold 
validation was selected for evaluation and prediction to the county-
wide dataset. We recognized the small size of the test set but prioritized 
training performance, provided evaluation metrics in a cross-fold 

validation framework, and provided an independent accuracy test on a 
soundscape dataset in the Supplementary Materials (S.12). 

2.2.4. CNN transfer learning 
We developed the CNN in Python (v.3.7.7, Python Software Foun-

dation, 2016) using the TensorFlow v.2.3.0 framework (Abadi et al., 
2015). The fully trained CNN model and related code are available at 
https://doi.org/10.5281/zenodo.6112713. CNN training is most effec-
tive when sizeable labeled training datasets are available (Christin et al., 
2019). However, when large labeled datasets are unavailable, or we 
desire faster training time, features developed in existing CNNs can be 
“transferred” to the new dataset through transfer learning (Yosinski 
et al., 2014). We tested pitch shift augmentation but ultimately did not 
include any form of data augmentation in the final CNN as it required 
increased computation with minimal change in accuracy (Salamon and 
Bello, 2017; Piczak, 2015) (Supplementary Materials S.7). 

We applied concepts from transfer learning using the pre-trained 
MobileNetV2 architecture. First, we pre-trained the ImageNet 
weighted MobileNetV2 using existing labeled acoustic data of calls from 
54 bird species from the S2L project, some recordings overlapping 
ABGQI data (Fig. 3). We used S2L bird data ROIs to learn low-level 
spectrogram features from an existing, large dataset similar to the 
domain of interest (Supplementary Materials S.8). Following acoustic 
feature pre-training, we trained the S2L-MobileNetV2 CNN with ABGQI 
data (Supplementary Materials S.9). This modeling framework lever-
aged previously learned low-level spectrogram features from S2L bird 
data while modifying weights to learn high-level, ABGQI-specific fea-
tures. The fully trained CNN produced a vector of five probabilities using 
a binary cross-entropy classifier with sigmoid activation (one value for 
ABGQI each). We refer to the fully-trained model as the ABGQI-CNN. 

2.3. Classification threshold optimization 

During model training, we used a custom threshold process, and 
testing data to (1) create binary classified values (present = 1 / absent =
0) for all classes in each 2-s spectrogram and (2) assess model perfor-
mance. Threshold value choices should be made on a study-to-study 
basis depending on the research question (Knight et al., 2017). Each 
class was optimized individually using the 50 presences and 200 ab-
sences from the testing data by setting threshold values from 0 to 1 in 
0.0001 increments, forcing probabilities below the threshold to zero/ 
absent and probabilities above the threshold to one/present, and 
selecting the threshold where the F(β)-score was maximized. F(β)-score 
(Eq.1): 

F(β) =
(
1 + β2)*(precision*recall)
(
β2*precision

)
+ recall

(1)  

where precision = TP/(TP + FP) and recall = TP/(TP + FN); TP is true 
positive, FP is false positive, and FN is false negative. 

Generally, prioritizing precision is favored to minimize false posi-
tives (Kahl et al., 2021; Knight et al., 2017; LeBien et al., 2020), and 
automated audio classification tasks can result in excess false positives 
(Balantic and Donovan, 2020). Prioritizing precision over recall means 
that classifications are conservative estimates for each class; i.e., there 
are fewer false positives and many true positives, but at the cost of 
increased false negatives. We used soundscape component CNN pre-
dictions and threshold values based on maximum F(β)-scores to produce 
binary classifications (Fig. 5). This framework allowed each 2-s spec-
trogram to have more than one class present, resulting in some 2-s 
spectrograms without a present soundscape prediction. In these cases, 
we created a sixth post-classification category, “Unidentified,” which 
occurred when ABGQI were absent in a spectrogram. We tested three β 
values: 0.50, 0.75, and 1.00. β values below 1.00 weight precision higher 
than recall while 1.00 weights recall equal to precision (Kahl, 2020). 
Following CNN threshold selection, we used changes in evaluation 
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metrics (F(β)-score, precision, recall) and the rate of Unidentified sam-
ples in the test dataset to select the optimal F(β)-score model. 

2.4. ABGQI-CNN model deployment 

We deployed the modeling framework for inference on the entire S2L 
acoustic dataset to classify ABGQI and the Unidentified class (Fig. 4). 
Recordings used in the ABGQI-CNN training process (n = 1,195 re-
cordings) constituted 0.25% of the entire S2L audio dataset. In our 
subsequent analyses, we removed these recordings to account for any 
bias in model deployment. The model deployment included the gener-
ation of 2-s spectrograms, ABGQI-CNN probability predictions, and 
classification with optimized prediction thresholds (Fig. 4). Deployment 
resulted in binary ABGQI classifications for every 2-s spectrogram (n =
14,578,590), indicating the presence or absence of each of the five 
classes or unidentified. We calculated percent time present, the number 
of predicted 2-s class presences relative to total 2-s spectrograms, using 
presence/absence values aggregated hourly and by-site for a rate of 
sound present. For example, if a site with 100 2-s clips had five 2-s 
presence, the rate was 0.05 or 5%. 

2.5. Sound pattern statistical analyses 

2.5.1. Covariate data 
We used ABGQI percent time present to examine temporal variation 

in soundscape recording site characteristics. The goal of these analyses 
was to examine how classified sounds reflect (1) expected patterns 
across the landscape, (2) site characteristics (e.g., does Anthropophony 
vary with distance from road), and (3) temporal sound variation (e.g., 
diel sound patterns). Covariates in these analyses included the majority 
LULC type within a 50-m radius of recorder location, distance to the 
nearest road, temporally relevant measures of recording (i.e., diel, 
monthly, and annual patterns), and meteorological (MET) station data. 
We extracted LULC data using aggregated classes from the Sonoma 
County Fine-scale Vegetation and Habitat Map (sonomavegmap.org). 
Road distance was calculated as the linear distance from a site to the 
nearest improved road (i.e., paved or high-use roads; gis-sonomacounty. 
hub.arcgis.com). We used meteorological data from Pepperwood Pre-
serve’s five MET stations (Ferrell et al., 2021a, 2021b) with 15-min 
resolution data co-occurring near 56 S2L sites at Pepperwood (n =
39,552 recordings). 

2.5.2. Comparative analyses 
We used hourly estimates of ABGQI to analyze diurnal patterns in 

rates of sounds (24-hour and night vs. day) among LULC types. We used 
the by-site estimates of ABGQI daytime data (5 a.m. to 8 p.m.), a tem-
poral subset that focused on animal and human activity co-occurrence, 

to compare ABGQI percent time present with overlapping deployment 
dates (day of the year), LULC, and road distance. Overlapping deploy-
ment dates (each site’s first day of recording) were used to analyze 
whether there were annual differences in soundscape activity. This 
aspect is essential because, for example, annual start dates may overlap 
each year differently with events such as bird breeding season and 
therefore capture different amounts of Biophony. Comparisons among 
LULC types helped discern any diagnostic ABGQI patterns within these 
ecosystems. We further explored how these relationships are modulated 
by distance from the nearest road. Road distance was treated as a 
grouped variable to examine patterns in sound in 100-m intervals (e.g., 
0–99 m, 100–199 m) from 0 to 1000 m and > 1000 m. We took hourly 
averages of wind speed data from Pepperwood MET stations to the 
nearest recording site and compared these data to hourly amounts of 
soundscape components using linear regression (i.e., does Geophony co- 
vary with wind speed). 

Because sample sizes and variances among treatment categories 
were not homogeneous, we used a Kruskal-Wallis test to evaluate effects 
for tests with more than two samples. If a Kruskal-Wallis test was sig-
nificant (large χ2 statistic and z-values and p < 0.05 indicate consider-
able differences are present), we then applied Dunn’s simultaneous 
multiple-comparison test with a Bonferroni correction to account for 
the inflated error rate to identify which pairwise relationships were 
significantly different (when p-adj < 0.05). We used Mann-Whitney’s U 
test for two-sample tests (i.e., day and night soundscape activity). We 
reported all pairwise test results in the Supplementary Materials (S.15). 

2.5.3. Modeling of soundscape components 
We used main-effects-only linear regression models to find under-

lying factors and drivers of the amount of predicted soundscape com-
ponents. Descriptive covariates included road distance (log- 
transformed), number of total 2-s samples at the site (log-transformed), 
LULC types, ARU type, year, and type of sound (i.e., ABQGI). The year 
was included to capture year-unique effects, such as deployment date or 
changes in human activity. The response, amount of sound, was the 
percent of positively predicted 2-s samples for each ABGQI as a logit 
score and included all soundscape data. For example, if Biophony was 
predicted in 80 of 100 2-s samples, this would result in a 0.8 positive rate 
(80%), converted to a logit value of 1.39. The initial model included all 
candidate variables, quadratic and cubic road distances, and in-
teractions between road distance and soundscape type and LULC. We 
used the function stepAIC from the package MASS in R (Venables and 
Ripley, 2002) to select the optimal model (Supplementary Materials 
S.10). 

3. Results 

3.1. Model performance 

We used the highest performing ABGQI model that included pre- 
training with bird vocalization and auxiliary Freesound data (F0.75- 
score = 0.883 ± 0.035) for evaluation and deployment (optimal model 
results in Table 2). Performance was determined from cross-validation 

Fig. 4. Workflow chart for the deployment of ABGQI-CNN on the entire S2L 
recording dataset. 

Table 2 
Optimal model performance was based on independent test data for each 
soundscape class using recommended evaluation metrics. We assessed model 
classification performance with the F0.75-score. We also report F1-score and 
area under the curve (AUC) for comparison with other studies.  

Soundscape Class Precision Recall F0.75-score F1-score AUC 

Anthropophony  0.975  0.780  0.894  0.867  0.939 
Biophony  0.913  0.840  0.885  0.875  0.984 
Geophony  0.923  0.720  0.838  0.809  0.959 
Quiet  0.891  0.820  0.864  0.854  0.984 
Interference  0.977  0.860  0.932  0.915  0.980 
AVERAGE  0.936  0.804  0.883  0.865  0.969  
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results. Cross-validation had consistent accuracy across iterations 
(F0.75-score = 0.838 ± 0.03; precision = 0.902 ± 0.03; recall = 0.754 
± 0.03) indicating that our sample sizes were sufficient to learn spec-
trogram features (i.e., consistent performance across folds). Pre-training 
with S2L bird vocalization data resulted in the default MobileNetV2 
learning acoustic-specific features and increased average F0.75-score 
from 0.659 to 0.756, average precision from 0.643 to 0.790, and a 
decrease in average recall from 0.712 to 0.704. Adding Freesound data 
to ABGQI data training, the default MobileNetV2 resulted in an overall 
increase in average F0.75-score from 0.659 to 0.760, average precision 
increased from 0.643 to 0.847, and average recall decreased from 0.712 
to 0.672. Combined, pre-training with S2L bird vocalization and auxil-
iary Freesound data increased the average F0.75-score from 0.659 to 
0.883. The optimal F(β)-score value of β = 0.75 was chosen for threshold 
values (Fig. 5) based on a balance between prioritizing precision over 
recall and accounting for the number of unidentified 2-s spectrograms 
(see Supplementary Materials S.11 for cross-validation threshold eval-
uation). We have provided an additional measure of model accuracy and 
generalizability in the Supplementary Materials (S.12). 

3.2. Statistical analyses of soundscape components 

The final ABGQI-CNN predicted the highest site average hourly 
amount of Quiet (µ = 24.6%, σ = 27.7%), followed by Biophony (µ =
24.2%, σ = 24.8%), Interference (µ = 9.8%, σ = 17.4%), Geophony (µ =
8.5%, σ = 12.9%), and Anthropophony (µ = 5.5%, σ = 9.8%), while 
Unidentified averaged 29.3% ± 17.5%. See Supplementary Materials 
(S.13) for a summary of sounds in Unidentified samples. 

3.2.1. Diurnal LULC patterns 
Mann-Whitney’s U tests revealed significant differences in the 

amount of Anthropophony, Biophony, Geophony, and Quiet during 
nighttime hours (8 p.m. to 5 a.m.) compared to daytime hours (5 a.m. to 
8 p.m.; sample size and test results in Supplementary Tables S.15.1 and 
S.15.2). Anthropophony was lowest during nighttime hours on average 
and was approximately two times higher during the day (µ = 6.79%; U 

= 2.364x107, p < 0.001). Similar doubling patterns in activity between 
night and day were observed for Biophony (night = 15.4% and day =
29.5%; U = 1.917x107, p < 0.001), while Quiet had the opposite pattern 
(night = 37.3% and day = 16.6%; U = 5.032x107, p < 0.001). These 
patterns were consistent when visualizing data partitioned by LULC, but 
we did not test for within-LULC differences. 

Biophony peaked between 5 and 8 a.m., depending on LULC, and 
gradually decreased until a local daytime minimum at 3–4 p.m. for all 
LULCs (Fig. 6). There was a slight rise in activity at 8 p.m. for all LULC 
types except oak/hardwood and conifer forests, and lower activity 
throughout all nighttime hours to a global minimum at 4 a.m. for all 
LULCs. Quiet was highest from 3 to 4 a.m. and lowest (i.e., there was the 
highest soundscape activity) at 10 a.m., opposite Biophony and 
Anthropophony activity. Maximum Geophony generally occurred in the 
afternoon between 12 and 3 p.m., while the minimum occurred during 
early-morning (5–7 a.m.) and evening (8–10 p.m.). Interference was 
highest between 11 a.m. and 3 p.m., implying more broad frequency 
spikes occurred later in the day regardless of LULC type. 

3.2.2. Annual and deployment date differences 
Kruskal-Wallis and Dunn tests revealed significant differences (p-adj 

< 0.05) in Anthropophony (χ2 = 35.049, p < 0.001), Biophony (χ2 =

29.582, p < 0.001), and Quiet (χ2 = 75.744, p < 0.001) among years 
when tested on data from only the overlapping range of annual 
deployment dates (May-01 to July-05; Supplementary Tables S.15.3 - 
S.15.5). These differences reveal year effects in our results. Limiting data 
to overlapping dates of deployment resulted in significant loss of ob-
servations when data were stratified by LULC or road distance (annual 
data decreased by: 2017 = 46.7%, 2018 = 48.3%, 2019 = 44.0%, 2020 
= 17.9%; total sites = 460 / 746). We note this inter-annual variance 
and acknowledge that differences in start and end dates of survey 
campaigns among years may add to this variance. Therefore, we use the 
entire datasets only for analyses that do not require accounting for a year 
effect (i.e., sections 3.2.3–3.2.5 and 3.3). 

3.2.3. Daytime LULC stratification 
Kruskal-Wallis tests using daytime recordings (5 a.m. to 8 p.m.) 

revealed significant differences among LULC types for Anthropophony 
(χ2 = 97.798, p < 0.001), Biophony (χ2 = 18.891, p = 0.004), and Quiet 
(χ2 = 109.92, p < 0.001), but not Geophony (Table S.15.6). Dunn test 
results showed which LULC types were significantly different within 
soundscape components (Fig. 7; Supplementary Table S.15.7). 

There was a weak but significant difference in Biophony between 
herbaceous and oak/hardwood forest sites (z value = 30.745, p-adj =
0.044). Overall, the most Biophony occurred at riparian/wetland sites 
and the least at agriculture/barren sites. Other LULC types had com-
parable Biophony to each other. 

The amount of Anthropophony in urban/developed sites was greater 
and differed significantly from herbaceous (z value = -3.163, p-adj =
0.0328), shrubland (z value = -4.506, p-adj < 0.001), oak/hardwood 
forest (z value = -4.993, p-adj < 0.001), and conifer forest (z value =
-5.931, p-adj < 0.001) Anthropophony. We observed more Anthro-
pophony in herbaceous and riparian/wetland sites compared to both 
oak/hardwood (z value = -4.579, p-adj < 0.001 and z value = -4.380, p- 
adj < 0.001, respectively) and conifer forests (z value = -6.818, p-adj <
0.001 and z value = -5.475, p-adj < 0.001, respectively). Agriculture/ 
barren Anthropophony was higher than conifer forests as well (z value 
= -3.783, p-adj = 0.003). Hourly patterns in Anthropophony showed the 
most magnitude change (i.e., the largest difference between the mini-
mum and maximum amount present) in urban/developed sites while 
riparian sites had a similar, but less pronounced pattern (Fig. 6). Other 
less human-impacted LULC types, such as oak/hardwood forest, conifer 
forest, shrubland, and herbaceous, showed similar patterns, but with 
lower overall amounts of Anthropophony, while agriculture/barren sites 
showed no discernable diel patterns. 

Quiet was lowest and co-occurred with Anthropophony in more 
Fig. 5. Threshold optimization values for maximum F0.75-score (circles), 
optimized independently for each soundscape class. 
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human-impacted urban/developed, agriculture/barren, and riparian/ 
wetland sites compared to overall higher amounts of Quiet in shrubland, 
oak/hardwood forest, and conifer forest sites, while herbaceous sites fell 
between these two groups (Fig. 7). When spikes of Biophony co-occurred 
with persistent anthropogenic noise, Quiet correspondingly decreased to 
near-zero (urban/developed, agriculture/barren, and riparian/ 
wetland). Quiet never rose above 35% presence at these more human- 
impacted sites, whereas at less human-impacted sites, Quiet reached 
over 50% in the evenings and rarely dropped below 15–20% during the 
day. 

3.2.4. Road distance 
Kruskal-Wallis tests using daytime recordings (5 a.m. to 8 p.m.) were 

significant among road-distance classes for Anthropophony (χ2 =

48.543, p < 0.001) and Quiet (χ2 = 46.521, p < 0.001) and not signif-
icant for Geophony and Biophony (Fig. 8; sample size and test results in 
Tables S.15.8 and S.15.9). Anthropophony was highest at sites closest to 
roads than sites farther from roads (e.g., 0–99 m and >1000 m [z value 
= -5.064, p-adj < 0.001]; 100–199 m and >1000 m [z value = -3.707, p- 
adj = 0.012]). Similar trends existed for Quiet where sites closer to roads 
had less Quiet than sites farther from roads (e.g., 0–99 m and >900–999 
m [z value = 3.725, p-adj = 0.011]; 0–99 m and >1000 m [z value =

4.757, p-adj < 0.001]; Supplementary Table S.15.10). We observed a 
higher ratio of Biophony to Anthropophony with increased road dis-
tance (Fig. 8). 

3.2.5. Effect of wind speed on soundscapes 
Wind speed was positively related to the amount of Geophony (R2 =

0.032, t-value = 6.32, p = 0.072), Anthropophony (R2 = 0.007, t-value 
= 2.677, p = 0.008), and Interference (R2 = 0.020, t-value = 5.065, p <
0.001). Quiet was negatively related to wind speed (R2 = 0.007, t-value 
= -3.093, p = 0.002) while Biophony did not have a significant rela-
tionship (p = 0.2336). Geophony rose throughout the afternoon, which 
reflects wind activity that also peaks, on average, later in the day. 
However, Interference also follows this pattern of rising throughout the 
day until an afternoon peak, and in some LULCs exceeds Geophony. 

3.3. Factors affecting the amount of soundscape components 

Stepwise variable selection and likelihood ratio tests resulted in a 
regression model containing recording year, the number of 2-s Mel 
spectrograms per site, soundscape component (ABGQI), LULC, road 
distance, and the interaction between soundscape class and road dis-
tance (Table 3; adjusted R2 = 0.25, F(19, 3691) = 66.36, p < 0.001). The 

Fig. 6. Soundscape component classifications aggregated by the hour for all 746 recording sites. Sites were stratified by LULC type, and lines represent the average 
percent of predicted ABGQI and Unidentified over each hour interval. 
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amount of sound increased with each progressive field season and was 
weakly related to the number of recordings. Anthropophony decreased 
the most with distance from roads, Biophony and Geophony decreased 
to a lesser degree, and Interference and Quiet increased (Fig. 8). LULC 
was not significant in determining the amount of sound, but including 
LULC resulted in a model with an AIC score decreased by 15. 

4. Discussion 

We optimized the development of a soundscape classifier with 
comparable accuracy to other ecoacoustic, deep learning tasks (Sup-
plementary Materials S.17; Fairbrass et al., 2019; Ruff et al., 2021) and 
expanded these previous efforts to include novel soundscape classes (i. 
e., Geophony, Quiet, ARU Interference). Additionally, we demonstrated 
that broadly classified soundscape components reveal systematic 
acoustic patterns about time (e.g., hourly and annual) and geographic (i. 

Fig. 7. Acoustic dissimilarity patterns of sites grouped by LULC for daytime recordings (5 a.m. to 8 p.m.). Significance notation of pairwise Dunn test results on the 
overhanging brackets, non-significant pairs not annotated, as follows: * p-adj < 0.05; ** p-adj < 0.005; *** p-adj < 0.0005; **** p-adj < 0.00005. 

Fig. 8. Soundscape components grouped by distance from roads for daytime recordings (5 a.m. to 8p.m.). Notches reflect confidence intervals (±1.58*IQR/
̅̅̅
n

√
) 

around the median. 
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e., road distance, LULC, and wind) properties. We chose to first focus on 
understanding and communicating model assumptions to contribute to 
the responsible use of deep learning methods in ecoacoustics (Wearn 
et al., 2019). Our model can be re-trained, and methods readily extended 
to other environments (https://doi.org/10.5281/zenodo.6112713). 

4.1. Deep learning model implementation 

Creating a high-performance classification model with a limited 
dataset is a vital step in expanding the application of CNNs for ecology 
and conservation where large labeled datasets or computing resources 
are not available (Salamon et al., 2017; Wearn et al., 2019). We provide 
evidence that an existing CNN (MobileNetV2) can be pre-trained and 
fine-tuned with soundscape data from our study site and applied to 
ecoacoustic problems using a small training dataset (e.g., target classes 
with approximately 1,000 samples (Çoban et al., 2020)). Other studies 
that have classified similar soundscape components achieved similar 
precision and recall for Biophony and Anthropophony (Supplementary 
Materials S.17) but have lower accuracy or do not classify Geophony, 
Interference, or Quiet (e.g., Fairbrass et al., 2019; Mullet et al., 2016). 
We used a custom classification and threshold optimization approach to 
understand how predictions differed based on the choice of F-score 
threshold values. Using F(β)-scores with β < 1.00 allowed us to prioritize 
precision, which can prevent underfitting the model (Abdi and Hashemi, 
2016), a known issue with small datasets and is a preferred approach in 
soundscape classification tasks (LeBien et al., 2020). Elusive or rare 
species classification would comparatively benefit by maximizing recall 
to avoid missing infrequent vocalizations (MacLaren et al., 2018; Shiu 
et al., 2020). 

Ecoacoustic classification may be subject to spatial and temporal 
autocorrelation sources in model assessment (Ploton et al., 2020), which 
has not been thoroughly assessed. Recent work demonstrated spatial 
(Holgate et al., 2021; Shaw et al., 2021) and temporal (Scarpelli et al., 
2021) autocorrelation patterns in acoustic recordings and acoustic 
indices. However, no work to our knowledge has investigated sources of 
autocorrelation in a deep learning model bias context. Future work 
would benefit from an investigation into sources of autocorrelation 
related to optimistically biased accuracy metrics in model assessment. 

4.1.1. Class imbalance in training deep learning models 
Small training datasets can result in bias when detecting underrep-

resented classes (Christin et al., 2019; Wearn et al., 2019). A class with 
low training samples results in poorly constrained model parameters 
and, therefore, poor class generalization (Wearn et al., 2019). In our 
case, we had low membership for Interference: n = 430 or 12.9% of the 
majority class size (Biophony), meaning our ABGQI-CNN may not have 
fully captured Interference features with the same confidence as other 
classes. We attempted to address the issue using a minority class over-
sampling method to bring the class membership of smaller classes up to 
the maximum membership class (Mohammed et al., 2020). This method 
resulted in higher performance for Interference at the cost of lower 
precision for larger classes, such as Biophony and Anthropophony. 
Because a priority of this classification task was to understand ecologi-
cally meaningful soundscape classes, we chose not to use balanced 
classes in training. We recommend that similar studies using CNN 
classification be aware of how a class imbalance in small datasets in-
fluences results, even after observing high evaluation metrics. 
Comparatively, if classes of interest have significantly low membership 
and are important (i.e., rare or cryptic species), techniques to augment 
or increase class membership are highly advised to reduce model bias. 

4.1.2. Accounting for instrument error and sound detection 
We observed non-trivial amounts of Interference (approximately 

10% of recordings) and suggest acoustic studies be aware of ARU 
deployment techniques and instrument sensitivity to these events (e.g., 
strapping the unit to a tree to prevent banging in the wind). We believe 
rapid broad frequency interference should be appropriately accounted 
for and can negatively influence automated methods, for instance, that 
compare background noise to changes in acoustic energy (e.g., the 
acoustic complexity index) (Pieretti et al., 2011). 

In terms of Unidentified sounds, our model performed worse in 
urban/developed sites with an increase late in the day and when Bio-
phony decreased (Fig. 6). The inability of our CNN to detect all forms of 
sounds is partly due to our training dataset containing single-label data, 
not multi-label mixed-signal spectrograms, and limited samples of some 
Anthropophony sounds (i.e., composed of 74% vehicle traffic and ma-
chinery; Supplementary Materials S.13). Further, Anthropophony had 
the most Freesound samples relative to S2L samples in our training set (i. 
e., Freesound = 883 ROIs: S2L = 912 ROIs), possibly resulting in 
underfitting. The use of data from multiple ARUs and training with 
auxiliary Freesound data may reflect the lower performance observed in 
our soundscape validation (Supplementary Materials S.12) and more 
Unidentified samples in the S2L dataset (29.3%) relative to the test 
dataset (9.2%). Increasing training data specifically from the S2L dataset 
would decrease potential generalizability to other datasets but increase 
our performance. Without these data, we can lower the number of Un-
identified samples and generate less conservative predictions using a 
more lenient threshold optimization metric like F1-score. 

Variation from ARU models was considered and found insignificant 
in the multivariate regression of the amount of sound when we included 
the effects of other site characteristics. However, we observed a 
consistent pattern of less pixel variation in spectrograms in LG versus 
AudioMoth ARUs, resulting in more Quiet in 2017 and 2018, years with 
LG deployments (note: the CNN was trained with ROIs from both de-
vices). We did not apply a correction but recognized that some variation 
in soundscape components is due to underlying variation in ARU sound 
detectability. To properly investigate where the effects of ARU variation 
originate (e.g., signal to noise ratio, sensitivity, sampling rate), a paired 
ARU deployment would control for landscape characteristics and 
possibly allow for a future correction to acoustic data from varying 
ARUs. We could not investigate these differences with the current 
dataset as ARUs were deployed at different sites with different recording 
lengths. Future research on soundscape differences among LULC types 
with variable structure and topography may provide insights into dif-
ferences in sound detection among ARUs (Rappaport et al., 2020). 

Table 3 
Estimated variable coefficients (Estimate), standard errors (SE), t-values, and p- 
values for all parameters in the final regression model for the amount of sound. 
The amount of sound is the logit rate of 2-s files predicted present for each 
soundscape component. The reference level is the Year 2017, Anthropophony, 
and urban/developed. Statistically significant factors in bold (p-value < 0.05).  

Variable Estimate SE t-value p-value 

(Intercept)  ¡3.646  0.684  ¡5.332 < 0.001 
Year18  0.049  0.098  0.502 0.615 
Year19  0.246  0.074  3.342 < 0.001 
Year20  0.308  0.080  3.844 < 0.001 
log(number Mel spectrograms)  0.123  0.062  1.967 0.049 
Biophony  1.039  0.384  2.707 0.007 
Geophony  ¡0.886  0.384  ¡2.309 0.021 
Interference  ¡1.624  0.384  ¡4.232 < 0.001 
Quiet  ¡1.104  0.386  ¡2.855 0.004 
LULC-Agric./Barren  0.090  0.273  0.329 0.742 
Herbaceous  0.32  0.190  1.695 0.090 
Shrubland  0.2612  0.207  1.259 0.208 
Riparian/Wetland  0.203  0.239  0.846 0.398 
Oak/Hardwood Forest  0.166  0.187  0.889 0.374 
Conifer Forest  − 0.036  0.187  − 0.190 0.849 
log(Road Distance)  ¡0.265  0.049  ¡5.392 < 0.001 
Biophony:log(Road Distance)  0.202  0.069  2.940 0.003 
Geophony:log(Road Distance)  0.266  0.069  3.867 < 0.001 
Interference:log(Road Distance)  0.350  0.069  5.090 < 0.001 
Quiet:log(Road Distance)  0.528  0.069  7.624 < 0.001  
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4.2. Soundscape patterns 

4.2.1. Annual variation and recording length 
The lowest Anthropophony was observed in 2020, which may reflect 

the reduction in human activity at a landscape scale during the onset of 
social lockdowns due to COVID-19, agreeing with reduced urban noise 
levels at a local scale (Aletta et al., 2020). Even though Biophony was 
highest in 2020, trends based on prior years make it difficult to say if this 
is related to the COVID-19 impact. Sampling effort was positively related 
to the amount of sound detected (Table 3), implying that extended 
recording times result in a higher rate of detections. This finding aligns 
with recent work that recommends extended ARU deployment to 
compute acoustic indices (Bradfer-Lawrence et al., 2019). 

4.2.2. Anthropophony 
Increases in Anthropophony throughout the day coincided with 

higher human activity (e.g., car and airplane traffic) and decreased ac-
tivity in the evenings (Francis et al., 2017), reflecting our expectation 
that urban areas have the most human activity in Sonoma County. 
However, Anthropophony decreased in urban areas at nighttime to 
slightly above other, less human-impacted areas (e.g., riparian/wetlands 
and herbaceous). Decreased nighttime Anthropophony is likely because 
Sonoma County urban areas are mostly suburban, surrounded by rural 
areas, and is peripheral to more densely populated areas in the San 
Francisco Bay Area. Higher Anthropophony in riparian/wetland areas 
may be due to the location of these sites in the Laguna de Santa Rosa area 
of the county, which is crossed by east–west road corridors. Agriculture/ 
barren sites, primarily vineyards in Sonoma, most likely have a large 
amount of anthropogenic noise associated with machinery (Lie et al., 
2016), little impact from diurnal human activity patterns, and less 
vegetation structural and compositional complexity, which could 
negatively affect vocalizing animal species resulting in less Biophony 
(Burns et al., 2020; Dröge et al., 2021). For example, tropical ecoa-
coustic studies found that more structurally-complex vegetation can 
maintain soundscape diversity in agricultural landscapes (Dröge et al., 
2021; Gage et al., 2015; Villanueva-Rivera et al., 2011). We observed 
persistent anthropogenic noise in agriculture/barren areas, which may 
be why we observe the least Biophony, particularly in the dawn chorus; 
however, urban areas still experience a large Biophony dawn chorus 
when Anthropophony is lower. We can increase Anthropophony’s recall 
to capture more anthropogenic noise to improve our understanding of 
these patterns. 

4.2.3. Biophony 
The highest Biophony reflects the dawn chorus when increased avian 

and mammal activity occurs (Krause and Farina, 2016) and the dusk 
chorus when insect and amphibian activity occurs (Gasc et al., 2018; 
Krause and Farina, 2016; Naguib and Riebel, 2014). Dusk chorus Bio-
phony is most pronounced in herbaceous and riparian/wetland sites, 
indicating increased insect and amphibian activity at these LULCs. Even 
though Anthropophony was lower in conifer forest, oak/hardwood 
forest, and shrubland sites, we did not observe more Biophony relative 
to sites with high Anthropophony, an inconsistent finding compared 
with prior ecoacoustic studies (Doser et al., 2019; Francis et al., 2017). 
However, lower Biophony in forests may be a product of detectability in 
denser structural landscapes (Rappaport et al., 2020). 

Although Biophony did not increase with decreased human impact, 
we observed a shift in the relative amounts of Biophony to Anthro-
pophony with less human impact. Most of the day, agriculture/barren 
and urban/developed sites were the only LULC types with comparable or 
higher amounts of Anthropophony relative to Biophony. Lack of varia-
tion in Biophony across LULCs indicates it is not as sensitive to LULC 
type as Anthropophony but can still capture the systematic dawn and 
dusk choruses and reflects high activity in riparian/wetland areas. Not 
capturing a decrease in Biophony in human-impacted areas may be due 
to our data not including many sites from urban centers in the county, 

being more oriented towards forested and lower-impacted landscapes. 
Notably, Biophony does not differentiate activity between, for example, 
a repeatedly vocalizing frog compared and a complex dawn chorus with 
multiple animal species vocalizing. Future work can utilize Biophony as 
a pre-filter for more refined taxonomic group classification or species 
with sufficiently labeled data. 

4.2.4. Quiet 
Naturally quiet landscapes are spaces where anthropogenic noise is 

absent, and invasive biophonic species are minimal (Dumyahn and 
Pijanowski, 2011; Pavan, 2017). Quiet places have a range of benefits, 
such as increased wildlife reproductive success and human well-being, 
highlighting the need to conserve and maintain naturally quiet land-
scapes (Buxton et al., 2019; Dumyahn and Pijanowski, 2011). We are 
limited in making inferences regarding naturally quiet landscapes 
because we chose to set the upper frequency of analyses to 11 kHz. This 
choice was made to extend the ABGQI-CNN to other ecoacoustic work, 
such as examining the relationships between soundscape components 
and acoustic indices. Many acoustic indices are limited in their upper- 
frequency range from 8 to 11 kHz (e.g., Boelman et al., 2007; Kasten 
et al., 2012). This frequency range allows indices to capture numerous 
wildlife vocalizations (e.g., frogs, crickets, and birds [0.2–8 kHz]; Vil-
lanueva-Rivera et al., 2011) and anthropogenic noise (typically 0–2 kHz; 
Joo et al., 2011) while prior work has shown a significant amount of 
environmental acoustic activity occurs below 9–12 kHz (Metcalf et al., 
2021; Pavan, 2017; Towsey, 2013). There may be other signals above 
11 kHz (i.e., insects and bats) that our modeling efforts did not reflect, 
which would result in lower amounts of Quiet and higher Biophony. 
However, Anthropophony, Geophony, Interference, and a significant 
amount of Biophony occurred below this frequency threshold; therefore, 
we interpret times of Quiet to reflect periods with generally lower 
acoustic activity. 

Quiet is most usefully interpreted alongside Biophony and Anthro-
pophony, the former contributing to naturally quiet landscapes while 
the latter deteriorates these landscapes. Quiet was highest at night when 
human, weather, and most biotic activity were lowest (Mullet et al., 
2017b). Conversely, the loudest time of day coincided with the dawn 
bird chorus and times of persistent anthropogenic activity (e.g., 
commuter and air traffic). Nevertheless, even though Biophony is 
negatively related to Quiet, biotic noises tend to be more culturally 
valuable and have positive effects on human well-being than human 
noise intrusion (Dumyahn and Pijanowski, 2011; Krause, 2002). 
Although Biophony was consistent across LULC types, increases in 
Anthropophony in currently less-impacted LULC types could negatively 
affect wildlife communities by increasing fitness costs for species 
(Francis and Barber, 2013; Mullet et al., 2017a), which could have 
cascading adverse effects on ecosystems. Deep learning classifiers with 
finer taxonomic groups or species could measure animal community 
composition not captured by our general Biophony class and potentially 
reveal differences between naturally quiet and noisier landscapes 
impacted by human activity and highlight species that may be robust 
against noise pollution (Slabbekoorn and Ripmeester, 2008). Future 
data collection can be aided by identifying times or spaces with 
increased Quiet to ensure ARUs are deployed with a higher likelihood to 
record ecologically meaningful signals (e.g., after 5 a.m. in conifer 
forests). 

4.2.5. Geophony and Interference 
We observed systematic afternoon increases in Geophony in agri-

culture/barren and riparian/wetlands with less pronounced patterns in 
other LULC types. In general, we observed relatively low Geophony, and 
our data may not have captured rain events as recording seasons begin at 
the onset of Sonoma County’s dry season in May. Geophony predomi-
nantly reflects wind patterns, with low confidence classifying streams or 
rain. We believe Interference may serve as a proxy for wind-related 
Geophony activity based on (1) a weak but correlated pattern with 

C.A. Quinn et al.                                                                                                                                                                                                                                



Ecological Indicators 138 (2022) 108831

12

Geophony from the Pepperwood Preserve analysis and (2) evidence 
from training set creation where we frequently observed Interference 
events co-occurring with gusts of wind. If we follow this hypothesis, 
combining Geophony and Interference signals reflects afternoon peaks 
in sound activity related to meteorological patterns in the wind (Fig. 6). 
This additive pattern is evident in less structurally-complex LULCs 
(agriculture/barren, herbaceous, shrubland, riparian/wetland), most 
notably in herbaceous sites. In herbaceous sites, microphones were 
attached to small temporary poles and were subject to wind more than 
other LULC types, where ARUs were generally mounted on larger tree 
stems. At sites where the deployment of ARUs results in minimal phys-
ical shielding, wind-based Interference can be non-trivial and lead to 
numerous occurrences of Interference noise events. Interference re-
quires proper identification and consideration in future acoustic ana-
lyses (e.g., acoustic indices), so events are not treated as ecologically 
meaningful signals and can be used to confirm the occurrence of wind. 
The ABGQI-CNN can reliably identify these recording errors. 

4.3. Soundscape patterns related to roadway proximity 

Roads are fixed sources of anthropogenic noise, and extensive 
research has documented the deleterious effects of traffic on animal 
communities (Barber et al., 2011; Buxton et al., 2019; Doser et al., 2019; 
Ware et al., 2015). Ecoacoustic work has examined patterns in sound 
relative to traffic noise and found that biotic sound activity is inversely 
correlated with traffic intensity and distance to roads (Doser et al., 2019; 
Pieretti and Farina, 2013). However, these studies used either acoustic 
indices (Pieretti and Farina, 2013), approximated traffic noise from 
geographic road use data (Barber et al., 2011; Doser et al., 2019), or 
required intensive manual categorization of spectrograms (Buxton et al., 
2019) to quantify traffic levels. Instead, we were able to quantify distinct 
patterns in anthropogenic noise related to distance from roads among 
LULCs, demonstrating the benefits of deep learning classification 
coupled with geospatial analysis. 

Our linear regression modeling results support general findings that 
anthropogenic noise decreases with distance from roads (Buxton et al., 
2019; Mullet et al., 2016), but we do not find there is a significant in-
verse pattern with Biophony as other studies note (Doser et al., 2019), 
except when we look at LULC types individually (shrubland and oak/ 
hardwood forest areas). Sites are rarely more than 1,500 m from major 
roads (n = 26, 3.5% of all sites), and there appears to be a heavy in-
fluence on patterns from these distant sites on analytical trends. At these 
distances, topographic position (e.g., on a hilltop or in a valley) may 
have a more significant effect on soundscapes than sites closer to roads 
that do not experience high levels of sound attenuation (Lyon, 1973; Yip 
et al., 2017). Anthropophony in riparian/wetland sites was similar to 
urban/developed and agriculture/barren sites; however, site distance 
from roads is significantly higher for riparian (492 ± 392 m, n = 21) 
than urban/developed (40 ± 20 m, n = 15) or any other LULC type. 
Higher Anthropophony in these riparian/wetland sites may be due to 
proximity to principal road corridors in the Laguna de Santa Rosa area of 
the county where sound can travel farther along less vegetative and 
morphologically complex riparian/wetland corridors (Wiley and 
Richards, 1978). 

These findings indicate that we can detect general soundscape pat-
terns relative to distance from roads. However, to better explain the 
causation of these patterns and relate soundscape classes to biodiversity, 
we need to incorporate other spatial characteristics of the landscape, 
such as topography, forest structure, climate, and other human impact 
layers in a more holistic modeling framework. Urban and environmental 
planning related to road construction can benefit from quantifying 
meaningful soundscape components (e.g., ABQ) with these or similar 
methods prior to, during, and following development to measure the 
effects of increased human activity on naturally quiet landscapes. 

5. Conclusion 

Autonomous sound recording is becoming a more prominent tool for 
ecological monitoring. However, the abundance of acoustic data re-
quires analytical approaches to account for error and non-biotic sounds. 
The ability to rapidly train and deploy a classifier to accurately identify 
almost 70% of a large acoustic dataset with 93% precision, as we found 
here, enables ecoacoustic researchers to study broad patterns and in-
teractions of sounds within a soundscape. Identified soundscape com-
ponents can serve as promising ecoacoustic indicators that: (1) reflect 
temporal and environmental factors that can be used to limit noisy 
human activities to times when the impact on wildlife is minimized, (2) 
aid in conservation and management efforts to prioritize at-risk land-
scapes, and (3) optimize recorder deployment to capture ecologically- 
meaningful acoustic signals. Furthermore, the ABGQI-CNN and these 
data can help filter wanted or unwanted sounds to optimize sound 
monitoring and discriminate meaningful acoustic events when applying 
acoustic indices, which can be impacted by the presence of Anthro-
pophony, Geophony, or Interference, reducing their measurement value. 
In summary, we have shown that it is possible to identify ARU error with 
Interference, quantify areas rich in vocalizing animal activity with 
Biophony, understand variations in human noise using Anthropophony, 
and identify quieter landscapes with data products generated from our 
ABGQI-CNN modeling approach. 
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Bedoya, C., Isaza, C., Daza, J.M., López, J.D., 2017. Automatic identification of rainfall in 
acoustic recordings. Ecol. Indic. 75, 95–100. https://doi.org/10.1016/j. 
ecolind.2016.12.018. 

Boelman, N.T., Asner, G.P., Hart, P.J., Martin, R.E., 2007. Multi-trophic invasion 
resistance in Hawaii: Bioacoustics, field surveys, and airborne remote sensing. Ecol. 
Appl. 17, 2137–2144. https://doi.org/10.1890/07-0004.1. 

Bradfer-Lawrence, T., Gardner, N., Bunnefeld, L., Bunnefeld, N., Willis, S.G., Dent, D.H., 
2019. Guidelines for the use of acoustic indices in environmental research. Methods 
Ecol. Evol. 00, 1–12. https://doi.org/10.1111/2041-210X.13254. 

Burns, P., Clark, M., Salas, L., Hancock, S., Leland, D., Jantz, P., Dubayah, R., Goetz, S.J., 
2020. Incorporating canopy structure from simulated GEDI lidar into bird species 
distribution models. Environ. Res. Lett. 15 https://doi.org/10.1088/1748-9326/ 
ab80ee. 

Bush, A., Sollmann, R., Wilting, A., Bohmann, K., Cole, B., Balzter, H., Martius, C., 
Zlinszky, A., Calvignac-Spencer, S., Cobbold, C.A., Dawson, T.P., Emerson, B.C., 
Ferrier, S., Gilbert, M., Thomas, P., Herold, M., Jones, L., Leendertz, F.H., Matthews, 
L., Millington, J.D.A., Olson, J.R., Ovaskainen, O., Raffaelli, D., Reeve, R., Rödel, M.- 
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