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Abstract 

This article explores the utility of using aerial imagery 
and deep learning to automate dozer line mapping. Due 
to the lack of dozer line data, we leveraged dirt and 
gravel road data to estimate dozer line characteristics 
and trained deep learning networks. We examined the 
performance of deep neural networks composed of UNET 
decoders with different ResNet encoders. Preliminary 
results demonstrated that a deep neural network 
composed of ResNet-18 and UNET provided an overall 
IOU score of 0.91 when used to map dirt and gravel 
roads in Sonoma County during the 2017 North Tubbs 
Fire. 

1. Introduction 

1.1. Wildfire impact  

California faces destructive wildfires which have 
impacted the lives of its residents. In 2017 alone, 
wildfires destroyed over 10 thousand buildings and 
caused the deaths of around 50 residents [1]. The Tubbs 
fire became one of California's most destructive and 
deadliest wildfires [2]. The loss of jobs, homes, and lives 
due to wildfires drives the need for effective methods of 
combating wildfires. 

1.2. Dozer line usage and its environment 
impact 

CAL FIRE works to mitigate the impact of wildfires in 
affected areas throughout California. CAL-Fire employs a 
variety of tactics such as controlled fires, air-based 
attacks, and removal of fire-fueling objects such as 
vegetation. A widely employed tactic used during a 
wildfire is constructing dozer lines: fire barriers created 
by bulldozers through removing vegetation in strategic 
areas with the intent to stop wildfire spread. While an 
effective tactic, the creation of dozer lines causes erosion, 
harms soil fertility, and pollutes nearby water sources [3]. 
The impact on the environment can cascade down to 
harm the local wildlife and communities [3]. 

The reusing and mapping of dozer lines are highly 
desirable to minimize the environmental impact and 
reduce the time to contain a wildfire. The current methods 

of mapping dozer lines rely on inefficient methods such 
as GPS mapping and prior personnel knowledge. 
Mapping dozer lines using GPS mapping requires costly 
manual labor. The data collected from these methods 
become outdated as firefighters create new dozer lines 
while others become overgrown, making these maps 
unreliable. Some property owners in affected areas 
construct dozer lines on their property during wildfires, 
and collecting such data becomes difficult due to private 
property rights. Combating the issue of outdated and 
inaccurate data requires a rapid and less invasive method 
of mapping dozer lines. 

1.3. Deep learning as a viable solution 

Deep learning focuses on algorithms designed to solve 
complex problems traditionally thought to require human 
intelligence, e.g., object classification and detection. 
When the goal is to delineate an object's boundary in the 
image, it is called a semantic segmentation problem. 
These problems can be solved using Artificial Neural 
Networks, which are data structures similar to the human 
brain neural network. Deep learning (DL) algorithms that 
leverage artificial neural networks can learn to solve such 
complex problems without being explicitly programmed 
to solve them by learning and recognizing data patterns 
[4]. Deep learning achieves good results in several 
d i fferent a reas (medic ine , secur i ty, gaming, 
environmental) with the added benefit of being 
significantly faster than humans [5]. 

The task of mapping dozer lines from aerial imagery 
relates to other researchers' ongoing works in using deep 
learning for mapmaking. Related work includes using 
deep learning to map rural road networks to update 
government-maintained maps in Western Canada [14]. 
The researchers leverage high-resolution satellite imagery 
to train deep learning networks such as SegNet [15] and 
obtain promising results. However, the networks 
struggled with distinguishing between roads and other 
structures such as gas pipelines, rivers, and clouds [14]. 
In another study, researchers have explored the utility of 
using deep learning to map roads of different surfaces 
such as gravel, asphalt, and dirt throughout Spain [16]. 
Their findings indicated other challenges of mapping 
roads, such as lack of defined road edges, differences in 
road widths, and significant curvature changes. The 
researchers noted U-Net [11] as the best performing 
segmentation architecture in their study [16].  



DL algorithms' ability to solve new problems has 
excellent potential to automate dozer line mapping. If 
mapping through deep learning is feasible, the method 
can promote reusing dozer lines and monitoring 
environment impact by rapidly creating reliable maps 
without requiring strenuous manual labor. 

2. Dataset  

2.1.  Sources used to create dataset 

An annotated dataset was crucial to train and evaluate 
a deep neural network. A dataset comprising image data 
of dozer lines with corresponding images depicting their 
location, called a segmentation mask, was required to 
solve a semantic segmentation problem (Fig. 2). The 
dataset for this project used Post-fire RGB-IR aerial 
imagery of the Sonoma County 2017 wildfire season [6]. 
The aerial imagery captures areas in Sonoma County 
affected by the Tubbs, Nunns, and Pocket fires (Fig. 1). 
The dataset used imagery from within the fire boundaries 
of each fire to avoid irrelevant data. The dataset utilized a 
false-color version of the post-fire imagery to help 
pronounce helpful features such as vegetation using the 
near-infrared data. Vegetation significantly reflects near-
infrared light, which can make vegetation-less roads 
noticeable.  

Figure 1. Extent of the aerial imagery.  

The low accuracy of GPS data of the dozer lines 
locations created in 2017 creates a mismatch between the 
GPS data points and the imagery. Training a DL 
algorithm based on such data was not ideal because it 
includes many mislabeled data. Consequently, we utilized 
an artificial impervious surface map of the county in 2013 
[7]. The map locates most dirt and gravel roads during 
2017 that are wide enough for vehicle traffic, closely 
resembling dozer lines' properties. We are estimating 
dozer lines through the use of dirt and gravel roads. 
However, the map may miss roads and dozer lines made 
between 2013 and 2017. The map was modified to 
remove road segments covered by canopy using a land 
cover map as a reference[8]. Roads covered by canopy 
can mislead a deep learning algorithm associating canopy 
features as dirt and gravel road features. 

We used Esri’s ArcPy, a library of GIS tools [9], to 
create the annotated dataset. Using the export training 
data for the deep learning method from ArcPy made 256 
x 256 image chips and segmentation mask chips from the 
map and aerial imagery within the fire perimeter. 

 
Figure 2. An example segmentation mask where black 
regions are labeled as “background” and white regions are 
labeled as “dirt/gravel road.” 
 
2.2. Data splitting for model evaluation 

After creating the dataset, the dataset was partitioned 
into three different sets: training, validation, and test. The 
DL network uses the training set during the training 
process to find features and distinguish between the two 
main classes: “dirt/gravel roads” and “background.” The 
validation set was used during the training to monitor the 
performance of the deep networks and adjust their 
parameters. The test set was the final assessment of the 
network’s performance and used to compare and contrast 
different models. The data samples in the test set are 
entirely held out from the training process to avoid bias. 

The training data comprise the North Nunns fire, South 
Nunns fire, South Tubbs fire, and Pocket fire containing 
dirt and gravel roads for a total of 8,821 samples. Thirty 
percent of this total were randomly selected and held out 
to be used as the validation set. The test set comprises all 
data from North Tubbs fire regardless of the presence of 
dirt and gravel roads to emulate a real-world use of the 
DL network. The motive for separating the test region 
from the training region was to measure the performance 
of the deep network when exposed to new geographical 
and regional landscapes. 

3. Methods 

3.1. Deep neural networks overview 

Deep neural networks (DNN) have trainable 
parameters that allow the network to find features that 
help distinguish dirt and gravel roads from the 
background class. These parameters are fine-tuned to our 
dataset during the training process, which is a cycle of 
predicting the validation set and parameter adjustments. 
When a DNN is done predicting the testing, a loss 
function calculates its performance. An optimizer is then 



used to take the loss function value and adjust the DNN’s 
parameters. A low loss function value indicates 
convergence and hyper-parameter quality. We will be 
using the Adam optimizer and testing different learning 
rates to find the optimal configuration for our dataset. 

3.2. Using transfer learning 

Fine-tuning a DNN's trainable parameters from scratch 
is not a straightforward task. A network may need 
thousands or even millions of diverse labeled images to 
find suitable parameter settings. With the small size of the 
dataset, it is not feasible to train deep neural networks 
from scratch. However, leveraging pre-trained deep 
learning neural networks offers a great workaround 
through a process called transfer learning [10]. Transfer 
learning is the concept of using parameter settings/
weights of pre-trained networks as a starting point in the 
training process of similar problems such as dozer line 
mapping. This approach requires less data for training to 
converge. 

3.3. Using UNET decoder and different 
ResNet encoders 

The process of creating an effective deep neural 
network required searching and testing a wide array of 
deep network architectures and hyper- parameters. For 
this project, we focused on using a UNET decoder with 
different residual neural network (ResNet) encoders [11]. 

An encoder in a UNET model is tasked with feature 
learning, while the decoder uses the learned feature from 
the encoder to distinguish our two classes. The different 
ResNet encoders tested were initially trained to classify 
objects from the ImageNet dataset: a dataset containing 
over 1 million images of 1000 different objects [12]. The 
encoders are frozen, meaning that the encoder parameter 
values were not changed during training. 

The difference in the different encoders was their 
length. The longer the encoder, the more trainable 
parameters that can create more refined features. 
However, using larger encoders comes at the cost of 
increasing time and computational resources for training. 
This project experimented with ResNet-18, ResNet-34, 
ResNet-50, and ResNet-101.  

4. Results 

4.1. Metrics and Search Area 

We trained various networks with different ResNet 
encoders, learning rate values, and epochs to search for 
the optimal parameters. We used learning rate values of 
0.0001, 0.001, and 0.01, and epochs values of 5 to 50 in 
intervals of 5 in order to limit the number of different 
possible combinations. With these values, we trained a 

total of 120 different DL networks. After training, we 
evaluated the network's performance on the test set using 
the metric called the intersection over the union (IOU) 
score. The IOU score indicates the amount of overlap 
between the ground truth label and the network's 
predictions, with IOU Scores of 0.5 or greater considered 
good predictions [13]. 

4.2. UNET performance on the entire test 
set 

The results demonstrated that the highest performing 
UNET model was obtained using a ResNet-18 encoder, a 
learning rate of 0.1, and trained for 15 epochs (Figs. 3-5). 
The optimal UNET network received an IOU score of .91 
on the test set. It is important to note that the test set was 
imbalanced since more images contained only the 
background class than images with dirt/gravel roads. To 
better understand the different UNET networks' 
performance, we further separated the test set into two 
groups, "images with dirt/gravel road" and "image no dirt/
gravel roads." We computed the IOU score on both 
groups separately. 

 
Figure 3. Performance of UNET networks trained with a 
learning rate of 0.0001  

 
Figure 4. Performance of UNET networks trained with a 
learning rate of 0.001  



Figure 5. Performance of UNET networks trained with a 
learning rate of 0.01  

4.3. Performance on images with dirt or 
gravel roads 

When testing the different UNET networks on only 
images that contained dirt/gravel roads, the resulting IOU 
scores were significantly different from those obtained 
from testing on the entire test set (Fig. 6). The IOU score 
across all the UNET networks ranged between .2 and .43, 
significantly lower than the scores obtained when testing 
on the entire test set. However, it is important to note that 
in various examples, the prediction quality is good, but 
the width of the estimated track does not match 
consistently, leading to a low IOU score. The model that 
obtained the highest IOU score on the entire test set 
obtained one of the lowest IOU scores, a score of 0.25, 
when evaluated on only images containing dirt/gravel 
roads.  

Figure 6. Performance of UNET networks trained with a 
learning rate of 0.01 on images containing dirt or gravel 
roads. 

4.4. Performance of images with no dirt or 
gravel roads  

The ability to avoid predicting dirt and gravel roads is 
an important objective, considering the vast amount of 
artificially made structures resembling dirt and gravel 
roads, e.g., canals, hiking trails, paved roads, and farming 

fields. When evaluating the different UNET Networks 
using only images with no dirt/images, the IOU scores 
obtained are similar to those tested on the entire test set 
(Fig. 7). 

Figure 7. Performance of UNET networks trained with a 
learning rate of 0.01 on images not containing dirt or 
gravel roads. 

4.5. Examples Predictions 

The UNET Network that obtained the highest IOU 
score on the entire test demonstrated some promising 
qualities in mapping dirt and gravel roads. One such 
example is that the network avoided labeling linear 
artificial structures on farmland as dirt or gravel roads 
(Fig. 8). Another excellent quality is its ability to 
correctly predict curved roads in some test images (Fig. 
9). However, one of the downfalls of this network is when 
it comes to mapping dirt and gravel roads in areas where 
it intersects or branches into two or more roads (Fig. 10). 

 
Figure 8. Network’s prediction on linear artificial 
structure from the test set 

 
Figure 9. Network’s prediction on a road with large 
curvature from the test set  

  
Figure 10. Network’s prediction on a road that self-
intersects from the test set 



5. Overview of results  

The results demonstrate the feasibility of creating an 
automated dozer line mapping system using aerial 
imagery and deep learning. Despite the lack of usable 
dozer line data for DL, estimating dozer lines with dirt 
and gravel road data gave us a view of some traits that 
make unpaved roads challenging to delineate their 
boundaries from images. 

6. Discussion and Future Work 

6.1. Outdated dirt and gravel road data 

We used dirt and gravel road data from 2013 with 2017 
aerial imagery to train and evaluate the DNNs. The 
outdated road data will cause inaccuracies in the overall 
IOU score. In cases where a DNN will correctly predict a 
dirt or gravel road created after 2013, the DNN will be 
penalized as that road will be mislabeled as background 
in the ground truth label. In the training process, the 
mislabeling of roads as the background will cause the 
DNN to incorrectly associate dirt and gravel road features 
as the background, lowering the performance. 

6.2. Estimating dozer lines through dirt 
and gravel roads 

Not using dozer lines to train the DNNs will cause 
them not to learn the unique properties of dozer lines. Not 
learning to find these properties can make it difficult to 
distinguish between dozer lines and other types of dirt 
and gravel roads. We plan to digitize and accurately label 
the GPS data of dozer lines made in 2017 to match the 
post-fire aerial imagery. Successfully correcting the dozer 
line data will eliminate the issues associated with using 
outdated dirt and gravel road data. 

6.3. Leave-one-Fire-out validation 

The current evaluations of the model are not 
exhaustive to indicate the actual performance of the 
different neural networks explored in this research paper. 
The selection of using North Tubbs data as a test set may 
be unrealistic of real-world examples, causing the 
obtained IOU to either underestimate or overestimate the 
real IOU when used in the real world. 

Future evaluations of model performance will use 
Leave-one-Fire-out validation to combat such biases. This 
technique will allow the deep network to be trained and 
tested on different partitions of the dataset such that each 
partition is an independent fire region, giving a greater 
insight into the real-world performance case. 
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