
Classifying False Alarms in Camera Trap Images
using Convolutional Neural Networks

Joseph Granados
Department of Computer Science

Sonoma State University, USA
granadoj@sonoma.edu

Chris Halle
Center of Environmental Inquiry

Sonoma State University, USA
halle@sonoma.edu

Gurman Gill (Contact Author)
Department of Computer Science

Sonoma State University, Rohnert Park, USA
gillg@sonoma.edu

Abstract—Wildlife trapping cameras often capture false alarms
when triggered by blowing vegetation or cloud shadows moving
across the ground. Identifying these false alarms and distinguish-
ing them from true capture events (images of actual animals,
human, vehicle) requires a substantial amount of personnel time.
Here we explore how convolutional neural networks can be used
to develop an automated computer screening model for filtering
out the false alarms. The models screening threshold can be
varied to suit the requirements of the given camera network.
For cameras used for real-time public education and outreach, a
low screening threshold can be used. Based on using a screening
threshold of 0.5 on a specific Tensorflow model, false alarms were
classified with an average accuracy of 88.83 ± 4.29% and true
capture events with 91.83±2.85% on a dataset of 23,930 images.
A high screening threshold should be used for research purposes.
By choosing a threshold of 0.97, only 0.37% of true capture events
are misclassified and about 50% of false alarms are correctly
classified, saving between 5.5 and 11 eight-hour workdays of
personnel time. As part of this study, we also explore some of the
ramifications of deploying the existing model to classify images
from new camera networks.

Index Terms—Convolutional neural network, false alarms,
camera trap images, transfer learning, undergraduate education

Type of submission: Regular Research Paper (CSCI-ISCI)

I. INTRODUCTION

Automated wildlife cameras (camera traps) have been used
worldwide to study animal abundance, diversity, and behavior
[11]. For example, in California, state agencies and non-
governmental organizations have been using habitat informa-
tion, as well as information collected from remote camera
traps, to investigate the effectiveness and placement of wildlife
connectivity corridors [7], [13].

Simple vegetation movement or cloud shadows moving
across the ground can generate large numbers of false alarms.
In addition, animals can trigger the motion sensors in a camera,
but be out of view of the camera lens. Experts and citizen
scientists must spend large amounts of time trying to separate
these false alarms from true capture events, in addition to the
primary task of classifying animal species.

Fortunately, technology has advanced to a point where
powerful analytical tools can be developed relatively quickly.
This study began as a simple guided undergraduate class
project in machine learning (Appendix A), and resulted in
a powerful tool to help reduce the workload associated with
image classification. Unlike most image classification studies,

which focus solely on recognizing animal species [1], [5], [2],
[6], [21], we focused on detecting false alarms.

Most of the existing work in detecting false alarms use
background subtraction-based methods to extract underlying
motion [10], [8], [15], [18], [20]. Each method has some
built-in limitation. For example, one might assume a size
and movement of a target species [15] or require manual
tuning of several parameters [8], [18]. In addition, many of
these efforts are focused on specific species such as snow
leopards [10], Eurasian beavers [15] and ungulates [8]. In
general, background subtraction-based methods aren’t able to
effectively address dynamic background scenes and require
additional measures to reduce false-positives [20].

In this study, the student team employed a relatively
new subfield of machine learning called Deep Learning [9],
typically represented using Convolutional Neural Networks
(CNN). CNNs use layers of hierarchical data, replacing human
expert derived patterns with computer-derived relationships
between pixels. Standard CNN models require tuning of
millions of parameters [16], which is only possible with large
datasets such as ImageNet [3] or the Serengeti database [14].
Training these models from scratch has been used to classify
animal species [12], [17] and detect humans and animals
[20]. They achieve high classification accuracy in presence of
dynamic backgrounds, but they either require powerful com-
putational resources (GPUs [12], high performance computing
clusters [17]) or compromise classification accuracy to control
the computational complexity of the CNN [20].

To reduce the time and computational resources required for
model development, the students focused on transfer learning
[19]. Transfer learning allows a previously derived CNN to
be repurposed by replacing the last layer in the network with
images from a current study (Fig. 1). This repurposing saves
significant computer time and development in training the
model, making it suitable for a guided classroom project. For
example, training a typical CNN from scratch takes several
days whereas transfer learning completes it within a few
hours without GPUs. Here we investigate the use of transfer
learning in screening out false alarms from a network of
wildlife cameras at a Sonoma State University (SSU) Preserve.
We also investigated the feasibility of extending previously
derived CNN models to new camera locations. This can be an
important issue when adding new cameras to a network.



Fig. 1. Inception-V3 CNN architecture. Here, we have repurposed the network by employing transfer learning. The last layer has been removed and replaced
in order to classify specific object categories (Figure adapted from tutorial 8 of https://github.com/Hvass-Labs/TensorFlow-Tutorials).

A. Dataset
Our study area was located on the Fairfield Osborn Preserve

on Sonoma Mountain, east of the SSU Campus (Fig. 2). The
habitat at the preserve is generally a mixture of oak woodlands
and grasslands. The preserve is used for both research and
education, and tours are offered for the public and grade school
classes. The cameras, therefore, collect information about local
wildlife movement as well as human use.

A total of 6 Bushnell cameras were deployed underneath
the power lines, along trails, and in unmodified habitat such
as meadows and under oak canopies, between April 2015 and
July 2016. The nominal motion detection range was 60 feet
(although this varies based on lighting conditions, species size,
etc.). The field of view of the motion detection sensor appeared
to be slightly larger than the field of view of the camera.
For this study, animals that triggered the motion sensor of the
camera but were out of the field of view of the lens were
counted as false alarms.

All cameras are set to snap three pictures when triggered.
The camera then resets for 10 seconds before it can be
triggered again. With this 10 second delay, an animal that is
merely passing by will be captured at least once in a set of 3
images (Fig. 3). An animal that lingers in the area, such as a
squirrel, may be captured in an extended sequence of pictures
as it remains near the camera. Most of the cameras are set
to capture images 24 hours per day. One camera was placed
near a popular trail junction and set to capture only night-time
images. Night images are greyscale. Because the focus of this
research is false alarm classification, each image is analyzed
independently. We are not attempting in this paper to provide
detailed population estimates.

The six cameras recorded 24,973 images. All images were
manually classified by two student interns, except for 1,043
images where lighting or fog made such determination impos-
sible. In all, 23,930 images were labeled, with 10,416 images

Fig. 2. Fairfield Osborn Preserve is located near the Sonoma State University
Campus, on Sonoma Mountain, along the Sonoma Valley Wildlife Corridor.
The Corridor forms an important wildlife linkage between the wildlands of
Marin County and the Mayacamas Mountains to the east and north.

classified as false alarms (Table I). The remaining 13,514
images are considered to be true capture events, indicating the
presence of a true trigger source such as an animal, vehicle,
or human (Table I).

II. METHODS

To develop the computer model, we chose an existing
CNN Inception V3 [16] that was pre-trained on ImageNet,
a database containing roughly 1.2 million natural images
of 1,000 object categories such as goldfish, hyena, sandal,
etc. [3]. Following the techniques of transfer learning, we
replaced the last CNN layer with our customized layer and
new categories (Fig. 1). This repurposing strategy assumes that
many of the basic components of visual recognition (edges,
colors, and textures) are common to any visual classification
task. Our new layer acted as a medium to correlate existing
model features to our new categories. We trained the new
layer on a much smaller subset of images (∼500) per category.



Fig. 3. Image capture sequence of a mountain lion transiting the field of view
of the camera from left to right. The images have been trimmed for clarity -
the full field of view of the camera is not displayed here. The full uncropped
images are used for the analyses presented in this paper.

Retraining requires about 30 minutes on an Intel(R) Xeon(R)
2.40 GHz 10-core CPU.

For processing, all images are decreased in resolution to
299 × 299 pixels with nearest neighbor resampling. To bal-
ance classes, a standard approach of oversampling has been
adopted. Oversampling is a technique that duplicates training
set images in under-represented classes to ensure that the CNN
model remains unbiased toward images of all classes. This
helps to ensure that the underlying correlations in the model
are not simply driven by more common animals (e.g., deer).

To construct and analyze the performance of the repurposed
CNN, the collection of images was divided into a training set
and a test set. The training set is used to train the CNN model,
which is then employed to classify the test set, and analyze
the model accuracy. There is no overlap between the training
set and the test set of images.

We examined two scenarios in this paper:
Scenario A - Established Camera Network: Images from

all cameras are used to develop and test the CNN model. In
other words, the training set and test set are from the same
population. This scenario is suitable for assessing situations
in which the CNN model is deployed for a given established
environment. The CNN model does not need to generalize,
or perform well on images that are not from cameras in an
established network.

Scenario B - Expanded Camera Network: Images from
selected cameras are used to develop the CNN model, which
is then used to analyze images from different cameras. In
other words, the training set and the test set are from different
populations. This scenario is suitable for assessing situations
in which a camera has been added to an existing network, with
no time (or resources) to develop a new CNN model.

We assess classification accuracy differently for the two
scenarios. For Scenario A (Established Camera Network) we
employ 5-fold cross-validation. The images from all cameras
are grouped and then divided into 5 image sets of roughly
equal size, and the image categories are roughly equally rep-
resented in each of the 5 image sets (an additional constraint
is that all 3 images taken upon camera trigger remain together
in a single set of images). Four image sets are used as the

TABLE I
TOTAL NUMBER OF FALSE ALARMS (NOTHING CATEGORY) AND TRUE

CAPTURE EVENTS AS CLASSIFIED BY TWO HUMAN OBSERVERS FOR ALL
SIX CAMERAS USED IN THIS STUDY.

Cameras
Category Cam1 Cam2 Cam3 Cam4 Cam5 Cam6 Total
Nothing 4740 2109 650 1163 1587 167 10416
Deer 383 747 833 1896 218 195 4272
Squirrel 692 436 916 249 104 0 2397
Human 1772 10 238 128 9 43 2200
Rabbit 454 18 25 767 422 120 1806
Turkey 195 119 121 50 158 0 643
Skunk 229 45 150 65 18 83 590
Bobcat 235 26 31 139 61 83 575
Possum 135 49 200 48 14 69 515
Coyote 13 3 31 52 20 79 198
Fox 78 5 0 0 0 0 83
Dog 29 0 0 8 0 0 37
Misc.
Birds 0 0 0 9 24 0 33
Raven 22 11 0 0 0 0 33
Quail 11 0 3 3 7 0 24
Multiple 0 3 0 17 0 0 20
Mount
Lion 12 0 0 0 3 3 18
Vehicle 0 0 0 18 0 0 18
Mouse 15 2 0 0 0 0 17
Raccoon 10 0 4 0 0 0 14
Stellar’s
Jay 3 3 0 0 0 0 6
Crow 0 0 3 2 0 0 5
Hawk 2 3 0 0 0 0 5
Owl 0 0 2 0 3 0 5
True
Capture
Events 4290 1480 2557 3451 1061 675 13514
Total 9030 3589 3207 4614 2648 842 23930

training set for the CNN model; the model is then used to
predict the categories of the single remaining image set. New
CNN models are derived sequentially by excluding one of the
5 image sets. A total of 5 CNN models is therefore derived
using this method, each of which is evaluated separately and
performance is averaged.

For Scenario B (Expanded Camera Network), we em-
ploy Leave-One-Camera-Out (LOCO) cross-validation. Im-
ages from 5 cameras are used as the training set for the CNN
model; the model is then used to predict the categories of
images from the single remaining camera. New CNN models
are then derived sequentially by excluding all images from
one of the 6 cameras. Because the cameras are in different
locations, the image sets from each camera are not of equal
sizes and contain a different number of images from each
category. In addition, some categories (e.g, mountain lions)
are not represented in all cameras.

For both scenarios, we train each CNN model in two
different ways:

Binary Processing: The training set images are labeled
as either false alarms (nothing category), or as containing
some object (something category, which includes images of all
animals, humans, and vehicles). The CNN model is trained to



predict that new images either contain something or nothing.
Animal Processing: The training set images are labeled as

one of 11 categories: nothing, deer, squirrel, human, rabbit,
turkey, skunk, bobcat, possum, coyote, and mixed. Because
CNNs require a relatively large number of labeled images to
derive the underlying correlations, all categories with fewer
than 100 images were placed into the combined mixed cat-
egory. The number 100 was chosen experimentally and is
the smallest number of images that did not reduce overall
classification accuracy. The mixed category includes elusive
animals that are rarely captured by cameras. The CNN model
is trained to predict that new images belong to one of the
11 categories. However, for computing the accuracy of false
alarm detection, all images that are not predicted as nothing
are assigned the label something. The key thing to note here is
that this method allows for an image from one animal category
to be misclassified as another without affecting the overall
classification accuracy.

We, therefore, have two scenarios and two training methods
for a total of 4 cases. The cases are: (1) Scenario A (Estab-
lished Camera Network) - Binary Processing, (2) Scenario A
(Established Camera Network) - Animal Processing, (3) Sce-
nario B (Expanded Camera Network) - Binary Processing, (4)
Scenario B (Expanded Camera Network) - Animal Processing.

A. Evaluation

Upon classification, each image is assigned a predictive
score of between 0 and 1 by the CNN, with the score reflecting
the certainty. Based on a screening threshold (set by the user),
a confusion matrix is used to describe the performance of a
CNN model using 4 metrics: True Positive Rate (proportion of
false alarms classified correctly), True Negative Rate (propor-
tion of true capture events classified correctly), False Positive
Rate (proportion of true capture events classified as false
alarms), and False Negative Rate (proportion of false alarms
classified as true capture events). In addition, to compute
overall performance, receiver operating characteristic (ROC)
curves [4] can be derived by varying the threshold from 0 to 1
and plotting the True Positive Rate versus False Positive Rate.
The larger the area under ROC curve (AUC), the better the
classifier. Lastly, we can investigate which true capture events
are likely to be misclassified as false alarms using relative
proportion graphs. These graphs represent the proportion of
images in each class that is classified by the CNN models as
false alarms (ideal graphs would indicate a value of 1 for the
nothing category and 0 for all other categories).

III. RESULTS

Based on using Scenario A (Established Network) with
Binary Processing, some images have a high likelihood of
being false alarms (Fig. 4a, 4c, 4d), others show a lower
certainty (Fig. 4b, 4e, 4f). Depending on whether the images
are false alarms (Fig. 4a, 4b, 4c) or not (Fig. 4d, 4e, 4f), the
screening threshold set by the user determines which images
will be correctly classified. For example, at a high threshold of
0.9, one of the false alarm images will be misclassified (Fig.

Fig. 4. Confidence scores of different images based on using Scenario A
(Established Network) with Binary Processing. Images (a) through (c) are
false alarms and images (d) through (f) are true capture events.

Fig. 5. Binary processing ROC curves for (a) Scenario A (Established Camera
Network) and (b) Scenario B (Expanded Camera Network).

4b). At a low threshold of 0.5, all of the false alarm images
will be classified correctly but all of the true capture event
images will be misclassified.

The performance of each scenario is assessed using the
confusion matrix (Table II). Only 3 screening thresholds were
chosen for the sake of brevity but the program can specify
any value. For Scenario A (established camera network),
using a screening threshold of 0.5, false alarms are clas-
sified with an accuracy of 88.83 ± 4.29% for binary and
83.02 ± 2.27% for animal processing. True capture events
are classified with an average accuracy of 91.83± 2.85% for
binary and 96.14±1.62% for animal processing. At the higher
screening thresholds, only false alarms with a high degree of
certainty are positively identified as false alarms. For Scenario
A (established camera network) with binary processing, the
false alarm classification accuracy decreases from 88.83% to
50.58% as the screening threshold is increased from 0.5 to
0.97. On the other hand, the true capture event classification
increases from 91.83% to 99.63%. Overall, the CNN models
used in Scenario A all perform similarly, with an AUC of
0.97± 0.00 (Fig. 5a).

For Scenario B (expanded camera network), using a screen-
ing threshold of 0.5, false alarms are classified with an
accuracy of 59.85 ± 28.23% for binary and 55.5 ± 29.35%
for animal processing (Table II). The decrease in average false



TABLE II
NORMALIZED CONFUSION MATRICES FOR SCENARIO A (ESTABLISHED CAMERA NETWORK), AND SCENARIO B (EXPANDED CAMERA NETWORK) FOR

DIFFERENT SCREENING THRESHOLDS (TH). THE FALSE ALARM CATEGORY IS INDICATED BY FA. TRUE CAPTURE EVENTS ARE DENOTED BY TCE.
ACTUAL CLASS IS SHOWN IN ROWS AND PREDICTED CLASS IN COLUMNS

Scenario A Scenario B

Th Binary Processing Animal Processing Binary Processing Animal Processing
fa tce fa tce fa tce fa tce

0.5 fa 88.83 ±4.29 11.17 ±4.29 83.02 ±2.27 16.98 ±2.27 59.85 ±28.23 40.15 ±28.23 55.5 ±29.35 44.5 ±29.35
tce 8.17 ±2.85 91.83 ±2.85 3.86 ±1.62 96.14 ±1.62 10.82 ±8.53 89.18 ±8.53 11.96 ±10.95 88.04 ±10.95

0.7 fa 81.25±5.79 18.75±5.79 77.53±2.29 22.47±2.29 42.37±34.83 57.63±34.83 45.15±31.6 54.85±31.6
tce 4.11±2.24 95.89±2.24 2.03±1.29 97.97±1.29 6.16±5.52 93.84±5.52 8.39±8.48 91.61±8.48

0.97 fa 50.58±11.67 49.42±11.67 55.76±4.01 44.24±4.01 11.16±16.33 88.84±16.33 19.65±26.03 80.35±26.03
tce 0.37±0.18 99.63±0.18 0.22±0.12 99.78±0.12 1.32±2.34 98.68±2.34 2.51±4.21 97.49±4.21

Fig. 6. Proportions of images in each class that are classified as false
alarms for Scenario A (established camera network) with binary processing.
Proportions are averaged across the 5 CNN models used in Scenario A. Only
categories with non-zero proportions are shown.

alarm predictive accuracy of ∼ 30% is notable compared to
Scenario A. This is also observed in the ROC curves in which
the CNN models exhibit much more variability with an AUC
of 0.88± 0.07 (Fig. 5b).

Typical camera trap pictures where the CNN model can
confuse pictures of animals with false alarms are dark with
many shadows, and the animals are small or fairly far away
from the camera (Fig. 4d, 4f). Nighttime can be especially
challenging with small animals because of the way that the
light reflects off the ground and the surrounding vegetation
(Fig. 4e). The relative proportion graphs show that for Scenario
A with binary processing, at a threshold of 0.5, nearly 90%
of false alarms are classified correctly (Fig. 6). This classifi-
cation accuracy for false alarms is obtained at the expense of
incorrectly classifying other images, including vehicles, birds,
and small animals, many of which have a smaller number of
images in the dataset (Table I). As the screening threshold is
increased to 0.97, only 50% of false alarms (∼5,300/10,416
images) are classified correctly, but very few true capture
events (∼50/13,514) are misclassified as false alarms (Fig. 6).

IV. DISCUSSION

We have shown the efficacy of transfer learning in detecting
false alarms in camera trap images. With an average AUC
of 97% in Scenario A (Established Network) with Binary

Processing, we provide a framework that has high accuracy
and can be implemented without a huge overhead on personnel
time and computational resources (Appendix A). The appro-
priate screening threshold to choose will obviously depend on
the organizational requirements. For example, in a real-time
education system that notifies students or community members
when an animal is spotted, it might be appropriate to ensure
that false alarms are rigorously screened out. The screening
threshold should be set low (around 0.5). Although such a
system will misclassify some true capture events as false
alarms, it would minimize animal notifications when the image
contains only a picture of the landscape. On the other hand,
if a collection of images is being used for research purposes,
a high screening threshold should be chosen. Although fewer
false alarms will be correctly detected, very few true capture
events will be misidentified as false alarms.

The choice of screening threshold has some practical impli-
cations. Traditionally, teams of citizen scientists and experts
examine each image to determine the animal species present.
With the aforementioned threshold of 0.97, about 5,300 false
alarms are correctly identified. If these pictures are removed
from further screening, and two scientists each would have
spent between 15 and 30 seconds looking at each false alarm
image (trying to detect an animal), then between 5.5 and 11
eight-hour workdays of personnel time is saved. Perhaps more
importantly, this also means that the screening task can be
scheduled more effectively around other projects.

Choosing to develop a CNN model under Scenario A or B is
dependent on the organizational goals or constraints. Based on
a high standard deviation, it is evident that the performance of
Scenario B is highly dependent on the camera that has been left
out of the training data set (Fig. 5b). For example, the standard
deviation in false alarm classification varies between 15-35%
(Table II). The performance variability is due to the differing
image characteristics of each camera. For example, each
camera has a different background, with vegetation that can
move or partially obscure the camera in wind events. Because
that obstruction is not learned when leaving one camera out
from the CNN training, the classification model interprets
such features as animals, resulting in a drop in classification
accuracy. Hence, if an organization needs to analyze images
collected over time from a fixed camera network, Scenario A
is definitely more suitable. It is more accurate. However, if



a new camera is added to an existing network, a pre-existing
CNN can be directly used to quickly analyze images from
the new camera (Scenario B), but at the expense of accuracy.
It must be noted here that if the organization supports basic
infrastructure for retraining the CNN model, it can be done
in a short period of time on a subset of images from the new
camera. The retrained model can be then used to classify the
remaining images.

A CNN model can be developed using either binary process-
ing or animal processing. For the purpose of false alarm detec-
tion, either paradigm will work. Although animal processing
yields a higher true capture event accuracy at a given threshold
(Scenario A in Table II), similar results can be obtained from
binary processing when the screening threshold is adjusted
appropriately. Of course, if an analysis goal is to identify a
specific image category, then animal processing must be used.
Our future goal is to improve false alarms detection accuracy
and the accuracy of animal identification through a multi-
stage classification scheme that combines the two processing
methods presented in this paper: (a) In stage 1, use binary
processing to identify and remove false alarms, and (b) In
stage 2, train the system again using animal processing to
classify animal species and false alarms. It is conceivable
that additional constraints will be required to increase the
CNN accuracy - for example, analyzing day and night images
separately.

Given the various methods available to find false alarm
images, which method should a land manager choose? Much
of the existing work supports only two categories (background
and one specific animal), varies in size of the dataset tested,
and employs different assessment metrics [10], [8], [15], [18].
Therefore, a direct comparison would be misleading. Recent
work has employed CNNs to find false alarms in a dataset
with multiple animal species [17], [12], [20]. They trained
several different CNN architectures from scratch and reported
a combined classification accuracy of over 95.1% on a single
training-test split [12], achieved an accuracy of 85.1% in
classifying false alarms on images with a completely different
species community [17] or employed a verification module
to reduce background false alarms by 12% while achieving
a foreground detection rate of 95.6% [20]. In contrast, our
work using transfer learning achieves a comparable combined
classification score of 90.5±3.48% based on a more stringent
evaluation metric (5-fold cross-validation). The advantage of
using transfer learning is the reduction in personnel time and
resources that are needed in coding and pre-processing. In
addition, this method lends itself to getting motivated teams
of undergraduates interested in helping to solve real-world
problems, as well as getting the images analyzed.

ACKNOWLEDGEMENTS

We would like to thank the following: PG&E and the TREE
Fund for funding the studies, CEI staff Dr. C. Luke and S.
Decoursey for assisting with preserve access and study setup,
and CEI interns K. Peel and C. Harvey for classifying images.

REFERENCES

[1] Chen, G., T. X. Han, Z. He, R. Kays, and T. Forrester. 2014. Deep
convolutional neural network based species recognition for wild animal
monitoring. Pages 858-862 in IEEE International Conference on Image
Processing.

[2] Cohen, C. J., D. Haanpaa and J. P. Zott. 2015. Machine vision algorithms
for robust animal species identification. Pages 1-7 in IEEE Applied
Imagery Pattern Recognition Workshop.

[3] Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei. 2009.
ImageNet: A Large-Scale Hierarchical Image Database. Pages 248-255
in IEEE Computer Vision and Pattern Recognition.

[4] Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recognition
Letters 27:861-874.

[5] Figueroa, K., A. Camarena-Ibarrola, J. Garca, and H. T. Villela. 2014.
Fast automatic detection of wildlife in images from trap cameras. Pages
940947 in Iberoamerican Congress on Pattern Recognition.

[6] Gomez, A., A. Salazar, and F.V. Bonilla. 2017. Towards Automatic Wild
Animal Monitoring: Identification of Animal Species in Camera-trap
Images using Very Deep Convolutional Neural Networks. Ecological
Informatics 41:24-32.

[7] Hilty, J. A., and A.M. Merenlender. 2004. Use of Riparian Corridors
and Vineyards by Mammalian Predators in Northern California. Con-
servation Biology 18:126-135.

[8] Janzen, M., K. Visser, D. Visscher, I. MacLeod, D. Vujnovic, and K.
Vujnovic. 2017. Semi-automated camera trap image processing for the
detection of ungulate fence crossing events. Environmental Monitoring
and Assessment. 189.

[9] LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature
521(7553):436444.

[10] Miguel, A., J. S. Beard, C. Bales-Heisterkamp and R. Bayrakcismith.
2017. Sorting camera trap images. Pages 249-253 in IEEE Global
Conference on Signal and Information Processing.

[11] Meek, P. D., G. Ballard, A. Claridge, R. Kays, K. Moseby, T. OBrien, A.
OConnell, J. Anderson, D. E. Swann, M. Tobler, and S. Townsend. 2014.
Recommended guiding principles for reporting on camera trap research,
in Biodiversity and Conservation. doi: 10.1007/s10531-014-0712-8.

[12] Norouzzadeh, M. S., A. T. Nguyen, M. Kosmala, A. Swanson, C. Packer,
and J. Clune. 2018. Automatically identifying, counting, and describing
wild animals in camera-trap images with deep learning. Proceedings of
the National Academy of Sciences. DOI:10.1073/pnas.1719367115

[13] Rudnick, D., S. J. Ryan, P. Beier, S. A. Cushman, F. Dieffenbach,
C. Epps, L. R. Gerber, J. N. Hartter, J. S. Jenness, J. Kintsch, A.
M. Merenlender, R. M. Perkl, D. V. Perziosi, and S. C. Trombulack.
2012. The role of landscape connectivity in planning and implementing
conservation and restoration priorities. Issues in Ecology, Report No.
16, Ecological Society of America, Washington, D.C.

[14] Swanson, A., M. Kosmala, C. Lintott, R. Simpson, A. Smith, and C.
Packer. 2015. Snapshot serengeti, high-frequency annotated camera trap
images of 40 mammalian species in an african savanna. Scientific data
2:150026.

[15] Swinnen, K., J. Reijniers, M. Breno and H. Leirs. 2014. A Novel Method
to Reduce Time Investment When Processing Videos from Camera Trap
Studies. PLoS ONE 9(6): e98881.

[16] Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna. 2016.
Rethinking the Inception Architecture for Computer Vision, Pages 2818-
2826 in IEEE Conference on Computer Vision and Pattern Recognition.

[17] Tabak M.A., Norouzzadeh M.S., Wolfson D.W., et al. Machine learning
to classify animal species in camera trap images: Applications in
ecology. Methods Ecol Evol. 2019;10:585590.

[18] Weinstein, B. G. 2014. MotionMeerkat: Integrating motion video de-
tection and ecological monitoring. Methods in Ecology and Evolution.
6.

[19] Yosinski, J., J. Clune, Y. Bengio, and H. Lipson. 2014. How transferable
are features in deep neural networks? Pages 33203328 in Advances in
neural information processing systems.

[20] Yousif, H., J. Yuan, R. Kays and Z. He. 2017. Fast human-animal
detection from highly cluttered camera-trap images using joint back-
ground modeling and deep learning classification. Pages 1-4 in IEEE
International Symposium on Circuits and Systems.

[21] Yu, X., J. Wang, R. Kays, P. A. Jansen, T. Wang, and T. Huang.
2013. Automated identification of animal species in camera trap images.
EURASIP Journal on Image and Video Processing 2013:52.



APPENDIX A: GUIDED CLASSROOM PROJECT DETAILS

This study, which began as an undergraduate class project
in Computer Science (CS), consisted of two phases. The first
phase required three interns and occurred mostly outside of
the classroom (prior to the semester starting). One CS Intern
developed a simple script that allowed two other student
interns (from the Center for Environmental Inquiry, CEI) to
loop through the entire set of camera images and identify the
animals (or false alarms). For each image, the script allowed
each CEI intern to simply select a previously identified animal
as being present, or to enter the name of a new species. The
two CEI interns each analyzed half of the images and then
checked each others work using the script to loop through the
previously labeled images. Mislabeled images were resolved
during the checking. Images were moved to separate folders
based on species (or nothing category for false alarms).

The time required for this first phase can be substantial,
although this phase only needs to occur once. Subsequent
image analysis can be done using the CNN model. We found
that identifying images of large easily seen animals required
roughly 5 seconds per image (and sometimes a little longer
for night-time greyscale images). Identifying false alarms
or small images that only filled part of the picture frame
could take anywhere from 5 seconds to 1 minute (with an
average of about 30 seconds). In our case, with about 25,000
images, and 11,000 false alarms, initial classification required
roughly 111 hours. Checking the classifications required half
as much time again, for a total of 167 hours (these time
estimates do not include the time required for the CS student
to write the script, which was minimal). One caveat with our
study is that the interns did not have to differentiate between
different subspecies (of skunks, for example), which can be
time consuming. The largest source of errors occurred for night
images when reflection from the camera flash can whiten a
substantial portion of the image. It was often difficult for the
students to differentiate between a mountain lion and a bobcat
when only seeing part of the animal clearly.

The second phase of the study consisted of the class
project. The class is offered to junior and senior-level CS
students. The students that take this class have completed at
least 3 courses in computer science (2 programming courses)
and are capable of setting up databases, writing scripts in
a few languages, and working independently. The students
learned the basics of image processing and machine learning
classification techniques during the first 10 weeks of the
16-week class. Following that, a team of 3 CS students
chose to implement this CNN model during the remainder
of the semester while being guided by the instructor. The
team presented their final classwork in a web document. One
of the students continued to shepherd the project after the
semester, with his efforts focusing mainly on evaluating and
improving the accuracy of the models. He contributed roughly
another 80 hours to the project and included the code for the
project in the GitHub repository: https://github.com/g-eoj/cv-
tl-keras/tree/ssu. This codebase may be used as the starting

point for wildlife professionals to implement their custom
solutions for the classification of wildlife images. It includes
a README file that describes the machine setup process for
CNN training and testing, and sample usage.

Specific steps taken by the student team for this project
along with references to code in the above GitHub repo are:

1) Learn the basics of deep learning including convo-
lutional neural networks, transfer learning, and tech-
niques for training and optimizing the network in
class and by taking online courses or watching on-
line tutorials such as: a. Coursera, with a sequence
of 5 courses covered in the Deep Learning Special-
ization. b. Deep learning using Google Colaboratory:
https://github.com/aamini/introtodeeplearning

2) Install the deep learning libraries Tensorflow and Keras
using Conda: specific instructions are available in the
README.

3) Prepare the images by putting them in a specific direc-
tory structure: specific instructions are available in the
README as well.

4) Group images that were taken within 1 second of each
other according to their timestamp obtained from EXIF
data. In addition, other groupings that are required
for evaluating different image sets (such as Scenario
A vs B) may be set up. Functions for grouping that
are employed in this paper are included in the file
ssu_preserves.py.

5) Perform transfer learning using pre-trained CNNs
(Inception-v3 in our case but other CNNs such
as ResNet50 or VGG16 can be easily employed
by, for example, setting the base model in the
file ssu_preserves.py). As explained in Fig-
ure 1 of this paper, this step involves removing
the last layer of the pre-trained CNN and replac-
ing it by a fully connected layer and a classifica-
tion layer (as shown in create_final_layers()
in the file retrain.py). Transfer-values (or fea-
tures from previous layers that do not change) can
be cached in hdf5 format using, for example, function
create_bottlenecks() in the file retrain.py.

6) Implement cross-validation evaluation strategies such
as k-fold (employed in Scenario A) and Leave-One-
Camera-Out (employed in Scenario B) using func-
tions in scikit-learn library such as GroupKFold
and LeaveOneGroupOut, respectively. Examples of
these evaluation strategies are included in the function
cross_validate() in the file retrain.py.

The real payoffs of this study were the interactions fostered
between the CEI staff/interns and the CS staff/interns. These
interactions helped the CEI interns learn more about the
technology available to understand practical environmental
issues, while the CS interns learned how to apply machine
learning to environmental issues. One of the CS students
helped prepare this manuscript and has chosen to apply their
knowledge in an AI company.


