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Introduction Convolutional Neural Networks (CNN) Results

e Goal: Incentivize the participation and contribution to the growth of an e CNNs are a class of neural networks that model how the brain works.

earth-science-based cyberinirastructure. e It compromises of convolutional layers, which are trained by large amounts of data. |
e Build: Analytical environment that allow automatic analysis and

e T[akes as input an image and outputs the confidence scores for each output category.
classification of data from connected data repositories
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e Develop a system for automatic classification of photomicrographs as Simple CNN composed of multiple Layers
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Transfer Learning and Fine Tuning a Pre-Trained CNN

— S e Allows a CNN to learn over a small image dataset such as photomicrographs.
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Ensemble Learning Result Analysis

Data Distribution e Use few different CNN models and combine their results to predict new results.

e 983 images of photomicrographs were selected by an expert.
Data Distribution between Sigma and Non-Sigma Categories
- Training Data Model A
879 >
750 i ) f |
Training Data Model B Predictions Generalizer Predictions _
~ S > ResNet50
w ) g ) g InceptionV3
ResNet50 with Fine Tuning
-~ o Training Data Model C Ensemble Network
-
Sigma-Clasts Non-Sigma-Clasts
————————————————————————————————————————————————————— Evaluation dati
. e Perform K-Fold Cross Validation i i
Addressing Data Imbalance e Compute F1-score Conclusion and Future Research Questions
. . . . — e CNNs are able to classify photomicrographs as containin mmetri
e Oversampling: Duplicates images in smaller dataset to match larger one. e samants Training set hear-sense-indicating c);aZts peliod Sy t?aining - aaverygserlrS]ZII da?as(;,t
e Data augmentation: Transforms images in smaller dataset. T e gl Test fold e Framework addresses data imbalance and allows combining models.
Transformations utiized: g P N ’ “ — E, e Can it be further trained to determine the shear sense (i.e., sinistral
(CCW) or dextral (CW) shearing)?
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