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Abstract—Interstitial Lung Disease (ILD) is an umbrella term
used to describe different variations of lung diseases that affect
humans. Due to the difficulty of classifying ILD, the time span
taken to have a patients CT scans analyzed by a radiologist is
rather long. To speed up the process, Computer-Aided Diagnostic
(CAD) systems have been built. In this paper, one such approach
based on Convolutional Neural Network (CNN) is proposed to
classify ILD from CT scans. We investigate how a generalized
pre-trained neural network compares to a domain-specific neural
network. In addition, we propose different methods to help
improve a CNNs performance in classifying ILD and assess how
our data impacts performance for both models. The InceptionV3
model produced by Google Inc. yielded the best F1 score
of 0.80 ± 0.11 rivaling a domain-specific model. When using
an Ensemble Network composed of InceptionV3, VGG16, and
ResNet50, the accuracy increased to 0.827± 0.08.

Index Terms—Convolutional Neural Networks, Computed To-
mography, Interstitial Lung Disease, Medical Imaging
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I. INTRODUCTION

Interstitial Lung Disease (ILD) describes a group of differ-

ent diseases that affect the interstitium and space around the

alveoli. In a recent study, it was reported that approximately

80 per 100,00 men suffered from ILD while 67 per 100,000

women suffered from ILD in the US. Current new cases

rates of 31.5% for men and 26.1% per woman are made per

year [1]. Medical professionals have provided the MedGIFT

dataset, that contains marked regions in computed tomography

(CT) scans [5]. Our on-going research explores how to use a

Convolutional Neural Network (CNN) to help classify ILD.

Due to the recent popularity of CNN’s, they have become the

method of choice for computer aided detection of ILD in CT

scans [3].

A. Convolutions Neural Networks

A CNN is a type of deep learning algorithm that is used

to help recognize and analyze patterns in images. A CNN

takes in an image as input, which is passed through different

convolutional layers to help filter the image into different

distinct textures. The convolutional layer outputs are then

passed into a series of fully connected (FC) layers which

will eventually output prediction scores using an activation

function.

A way to intuitively understand CNNs is as follows: The

very early layers help extract edges and colors in the input

image. Once the image goes through the early convolutional

layers, pooling and convolutions layers help extract textures

and shapes. The final FC layers give weights to all the

extracted textures and edges to determine features that are

critical for image classification. The final layer is then the

prediction layer that outputs the predicted category along with

their confidence scores (Fig. 1).

Due to the increased popularity of CNNs in the last decade,

major tech companies have funded and invested time into

creating a generalized CNN to help classify a multitude of

image variations. These generalized CNNs are targeted to clas-

sify natural images [4]. They contain millions of parameters

and are trained on state of the art GPU’s and datasets such

as ImageNet that contains 1.2 million images belonging to

1000 non-medical categories [10]. The CNN architectures used

in this research are InceptionV3 (Google Inc.), VGG19 [8],

VGG16 [8] and ResNet50 [9]. All networks are provided by

Keras [6] that were pre-trained on ImageNet.

Fig. 1. Generalized CNN that takes in an Image and outputs a probability
score for different categories.

II. METHODS: TRANSFER LEARNING

A large amount of data and GPU power to train on large

batches of data is not readily available. A technique called

transfer learning can be used as an alternative to train a

CNN model from scratch [2]. It uses a pre-trained network
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and makes it more domain-specific by training on a limited

amount of data. Transfer learning is done by removing the

classification layer in the trained networks, then attaching new

untrained layers into the model. These layers consisted of two

fully connected (FC) layers and two dropout layers, followed

by a final soft-max activation layer (Fig. 2).

In addition, our ongoing research assesses the efficacy of

various other techniques that will help boost the classification

performance of a transfer learning model to show how it

can compete with more domain-specific models. In order to

improve transfer learning, we propose using an ensemble of

pre-trained networks.

Fig. 2. Schematic diagram showing the process of adapting an existing CNN
to classify images from a new domain.

A. Ensemble Networks

A technique we propose to help improve classification rates

of transfer learning models is using an ensemble of networks.

In an ensemble network, we run and train 3 independent

models. Once all predictions for the dataset have been made

with these 3 models, we sum all the predictions score and

takes the average of the results. This will produce new scores

that takes into consideration what each model learns.

III. DATASET

The MedGIFT dataset is used to generate the image dataset

that will be used to perform experiments. The database con-

tains CT scans from 128 patients diagnosed as healthy or

having 1 or more of 10 different ILD’s [5]. Each CT scan

contains labeled regions of interest (ROI).

Fig. 3. Patch extraction from a CT scan. ROI are marked by the yellow curve.
The yellow region was then converted from HU to RGB.

A. Patch Extraction

All models in this paper required three-channel (RGB) input

images. Since MedGIFT contains raw CT volumes of a patient,

a MATLAB framework was developed to extract patches from

the CT volumes. The framework traversed through all the

ROI’s and extracted patches of a fixed size and converted them

to Red, Green, Blue (RGB) images (Fig. 3). Each patch has

at least 50% of its pixel images inside the designated ROI.

The number of patches extracted can be changed by changing

the patch frequency, as well as patch size. Patch frequency

designates how often patches are sampled from within ROI.

Currently, there are three patch size presets: 16x16, 32x32,

and 64x64 pixels, with CNN’s performing better when trained

and classifying on the larger 64x64 pixel images.

CT scans are displayed in Hounsfield Units (HU), where

each pixel value represents underlying tissue density (Air: -

1000, Lung: -900, Bone: +1000). The HU were linearly

mapped as follows: HU range (-1000, -600) to the Red

channel, HU range (-601, -200) to the Green channel, and

HU range (-201, 200) to the Blue channel.

The final dataset generated from the CT scans consists of 9

classes, 122 patients, and 20138 image patches (Fig. 4). The

classes were as followed: Bronchiectasis(BR), Consolidation

(CN), Emphysema (EM), Fibrosis (FI), Ground Glass (GG),

Healthy (H), MacroNodules (MaN), MicroNodules (MiN),

Reticulation (R).

Fig. 4. Class distribution of image patches.

IV. EVALUATION

The performance of CNN models can be adversely affected

by data imbalance, wherein a number of images of different

classes hugely varies. To address data imbalance, oversampling

was used to even out class distributions during training. This

was done by finding the highest group count and sampling all

other subsequent classes to the same class count of the higher

class.

Cross-validation was used to assess the model’s average

performance. The cross-validation technique Leave One Group

Out (LOGO) was used to train the transfer learning and

domain-specific CNN models. In Leave One Group Out, each

patient, not disease category, is considered a Group. This

ensures that only information specific to the disease is used

during training. By removing certain patients images from the

training set, we can ensure that the model is not influenced

by patient patterns, but by disease textures. Once training is

complete, then we only use the removed patient images as the

test set. This allows us to make an estimate of the models

performance for any CT scan, regardless of the patient.

Each models performance was evaluated by calculating

their F1-Score, which is defined as:
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F1 = 2∗precision∗recall
precision+recall (1)

Precision = TruePositives
TruePositives+FalsePositives (2)

Recall = TruePositives
TruePositives+FalseNegatives (3)

A Confusion Matrix (CM) was also used to help visualize

the actual class versus predicted class for all images. The ver-

tical axis represents actual classification while the horizontal

axis represents predicted classification.

A. Transfer Learning Results

Fig. 5. Final Average F1 Score for each Model after running through all 122
LOGO runs.

Four different pre-trained models were used to evaluate

the performance of transfer learning. These models were:

VGG16, VGG19, ResNet50, and InceptionV3. The transfer

learning layers began with a FC layer containing 1020 neurons.

Followed by a dropout layer with a 0.5 dropout rate to

prevent overfitting. Following the dropout, one more FC layer,

with 520 neurons, and dropout layer was added. The final

layer following the dropout was a soft-max activation output

prediction layer. All models were found to reach the best

performance with the parameters in Table 1.

The best notable performing model was InceptionV3, while

our worst performing model was VGG19 (Fig. 5). InceptionV3

quickly rivaling the domain-specific Bern Model shows that

it had better performance at identifying the key textural

features in the lung patches, while ResNet50 and VGG16 both

struggled to capture the same amount of detail (Fig. 5).

TABLE I
TRANSFER LEARNING PARAMETERS

Parameter Values
Epochs Batch Size Learning Rate Optimizer

8 32 0.0001 Adam

B. Using an Ensemble Network

We used InceptionV3, ResNet50, and VGG19 to create the

ensemble network. The ensemble network yielded the best

results at an F1 score of .827, showing us that combining the

models lead to a higher classification rate on average. From

the Ensembles confusion matrix, shown in Fig. 6, we can note

that the worst-performing class is Bronchiectasis at an F1 score

of 0.64, while the best performing class was Consolidation at

0.92.

Fig. 6. Final CM for the Ensemble Network.

C. Using a Domain Specific CNN

We wanted to compare how well a transfer learning model

can compete with a CNN that is domain-specific to the

problem. In order to test this idea, we created our own LeNet5

inspired model along with another model created by the Bern

team [7]. Our in-house CNN used a LeNet5 variation that

consists of 2 convolutions layers follows by a max pooling,

activation, convolutional layer, max-pooling layer, activation

layer and then passed through three FC nodes. Our in-house

CNN did not perform well producing a sub-optimal F1 score

of 0.38 while the domain-specific Bern model proved to yield

high classification results, with an F1 score of 0.80. One key

thing to note is ILD textures are categorized by its textural

features and having a max-pooling layer early on could result

in removing these key features in the images [7]. Future

models will be tested where the max-pooling occurs at the

end, similar to the Bern model.

The Bern performed notably well, with a classification score

very similar to the InceptionV3 transfer learning model. From

the confusion matrix in Fig. 7, the best performing class

classification is MacroNodules with an average 0.91 F1 score.

The worst performing class was within Bronchiectasis, at an

F1 score of 0.46 on average. Overall, Ensembles based model

performed better than the Bern model.

Fig. 7. Bern Model Confusion Matrix
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V. DISCUSSION

From these preliminary results, we can now see that we

are able to take a pre-trained generalized CNN and make it

more domain-specific. Performing transfer learning allows us

to achieve near similar results to a specialized CNN such as

the Bern Model. This can prove to be very useful as we do not

have to train from scratch and dedicate GPU usage and spend

days. When using transfer learning, we can optimize the time

required it takes to train the network.

Using our best performing network, Ensemble Networks,

we were able to increase the classification performance of

two different classes. In the Bern model, the Bronchiectasis

class only scored an F1 score of 0.46 on average, while in the

ensemble networks, this class performance increased to 0.64.

Similarly, a slight increase was also seen in Consolidation

with its F1 score increasing from 0.89 to 0.92. Performance

of all other classes, excluding Emphysema, remained fairly

consistent, which is discussed next.

The accuracy of Emphysema class lowered by a notable

margin dropping from an average F1 score of 0.79 in the Bern

model to 0.73 in the Ensembles model. However, we can note

from the Ensembles Confusion matrix (Fig. 6) that 22% of

Emphysema patches were being classified as Reticulation. This

is dramatically different from the 1% of such misclassifications

in the Bern model (Fig. 7). Not much can be commented as

to why this has happened, as the Reticulation disease did not

have any notable increase or decrease in its performance, but

this occurrence will be studied in future research.

Overall, using a single well trained pre-trained model with

transfer learning would be enough to compete with a domain-

specific CNN. However, by combining multiple pre-trained

models that were trained using transfer learning, we can

begin to increase the classification performance. As shown

in Fig. 8, the Bern model has high confidence in predicting

if a patient scan had fibrosis or consolidation. However, it

has lower confidence in determining MicroNodules. Likewise,

Inception performed well at having high confidence scores for

Consolidation and MicroNodules, but did not perform notably

well with Fibrosis. But by combining InceptionV3, ResNet50,

and VGG16, all three models were able to, on average, figure

out all three diseases with high confidence. This could be due

to each pre-trained model learning different key features in the

patient’s CT image.

The convergence of all models happens at around 8 epochs.

This gives us insight that given enough data, not many epochs

are needed to quickly identify key features in ILD CT scans.

An advantage that pre-trained models have is that training time

is nearly half of what is required from training a CNN from

scratch. On average, a pre-trained CNN model with transfer

learning takes an hour for training. As opposed to a CNN from

scratch, such as our LeNet5 inspired model, and Bern Model,

which on average take about 2 hours for training. However,

due to the nature of Ensembles having to run three different

networks, the run time for Ensembles was on average greater

than a single model, at a run time of 4 hours.

Fig. 8. Confidence Score of three different diseases. Scores in blue were
correctly classified, while scores in red were incorrectly classified.

VI. ON GOING WORK

This on-going research project is funded by Research,

Scholarship, Creative Activities Program (RSCAP) at Sonoma

State University. Ongoing work will involve creating our own

model to categorize critical features to improve the model

classification. In addition, the MedGIFT dataset will be used

to generate 2.5D images and create a 2.5D model to classify

ILD. By using 2.5D images, the model will have information

regarding textures of the disease by looking at the nearby

slices. This will add more depth to train and test for each

patient’s data. Using a 2.5D dataset may also allow for better

classification results since the disease may grow vertically

along with the patient, not just horizontally [11]. Using full

3D images is also being taken into consideration to have a

full volume of CT information be given to the CNN model,

as this will provide more data to the CNN, not just an area of

the CT image information.
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